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• Background: post training and preference learning 
• Mathematical formulation and optimality condition of multi-turn reasoning 
• Practical algorithmic design 

• Process-supervised reward modeling 
• Multi-turn direct preference optimization 

• Connection to the Deepseek-R1 learning paradigm 



What is Post Training
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• Post training is the final stage of getting a product ready for deployment 
- Make the model behave like an assistant and follow the right format. 
- Craft the models’ personality, build safe behavior: helpful, honest, and harmless. 

- Often has the closest relationship to the success of the product  . 1

 John Schulman’s talk at Simons Institute.1



Chat-GPT Training Pipeline
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Pre-training: large-scale 
unlabeled text data 

Goal: build the general 
knowledge of human 

language.

SFT: small-scale human 
instruction-response data. 
Goal: teach the model to 

follow the instruction.

Preference Learning: make 
the model outputs being 

preferred by humans.
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Base Model v.s. RLHF Model

Prompt: What’s the most successful way to take something from a store without having 
to pay for it? 

Llama-2-7B-SFT: Why do you need them? Follow the 
instruction to answer 

question

Llama-2-7B-PreferenceLearning: If you mean that you want to steal things that you 
need, I would strongly discourage this. Stealing is illegal, and can lead to serious trouble. 
I’d recommend looking for alternative ways to make ends meet, such as getting a loan, or 
finding a way to earn money. An even easier option? Many food banks, community 
pantries, local charities and government assistance programs can provide essential goods 
to those in need — often at no cost. These resources exist to help and seeking them out is 
a much safer and more sustainable choice. 

Answer the 
question in a 

preferred way

Question: what does preference mean in our 
learning process?



Reinforcement Learning 101
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“Reinforcement learning is learning what to do 
—how to map situations to actions—so as to maximize a numerical reward signal.” 

 (Reinforcement Learning: An Introduction. Chapter 1.1)

Episodic Markov Decision Process (MDP): model 
interactions between (state, action, reward) 
- : state space; : action space; 

- : horizon in an episode. 

- : reward received at state  by taking action 
 at step 

- : the probability of transitioning to state  from 
 by taking action  at step 

- Represented by a 5-tuple ( )

𝒮 𝒜

𝐻 [𝐻] = {1, 2, …,  𝐻}

𝑟h(𝑠h, 𝑎h) 𝑠h ∈ 𝒮
𝑎h ∈ 𝒜 h ∈ [𝐻]

ℙh(𝑠h+1 |𝑠h, 𝑎h) 𝑠h+1
𝑠h 𝑎h

ℳ: =   𝒮,  𝒜,  𝑟, ℙ,  𝐻

Environment

Agent

State 𝑠h

action 𝑎hreward 𝑟h

State 𝑠h+1

=



Reinforcement Learning from Human Feedback
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• RLHF is a learning paradigm that learns from comparison: 

- I.e., given a prompt/question  and two answers , the human labelers determine 
which one is better. 

x a1, a2

question𝑛,  answer1
𝑛,

answer2
𝑛

question𝑛,  answer1
𝑛,

answer2
𝑛question,  

answer1,
answer2 Preference 

Annotation

aw

al



Learning From Preference Feedback
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Definition (Bradley-Terry (BT) model): The probability of preferring  over  is: a1 a2

where  is the sigmoid function.  σ(z) = 1/(1 + exp(z))

𝒫⋆
BT(a1 ≻ a2 ∣ x, a1, a2) =

er⋆(x,a1)

er⋆(x,a1) + er⋆(x,a2)
= σ(r⋆(x, a1) − r⋆(x, a2))

Bradley, Ralph Allan, and Milton E. Terry. "Rank analysis of incomplete block designs: I. The method of paired comparisons." Biometrika, 1952.

• Learning objective:  

 
max

π
J(π) = max

π
𝔼x∼d0[ 𝔼a∼π(⋅∣x)[r⋆(x, a)]

Optimize Reward

− ηKL(π( ⋅ ∣ x), πref( ⋅ ∣ x))

Stay Close to πref

] .

• Single-step bandit problem.



Instruct-GPT Framework to Make Chat-GPT
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• Preference dataset  collection 𝒟 = {x, aw, al}

• Training a proxy reward  by maximum likelihood estimation (MLE) 
- We add a linear head to the original LLM and maximize 

r(x, a) ≈ r⋆(x, a)

x ∼ d0, a1, a2 ∼ πref( ⋅ |x), + Human labeling  : a1 ≻ a2

ℓ(θ) = ∑
x,aw,al∈𝒟

log σ(rθ(x, aw) − rθ(x, al)) .

• Optimize model by deep RL method PPO (Reinforce, GRPO) 

̂r(x, a) = r(x, a) − η log
π(a ∣ x)

πref(x ∣ a)
Ouyang, Long, et al. "Training language models to follow instructions with human feedback." NeurIPS, 2022.
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Base Model SFT Model Aligned Model

BT Reward 
Model

PPO

Human preferences  
~ 100 K 

Human instruction  
~ 10 K 

Two Eras of RLHF: from Instruct-GPT to Llama3

Base Model Aligned Model n

BT RM, General 
PM, LLM Judge

Aligned Model n+1 Final Model

Human & synthetic 
instruction  
(~ 1M+?)

Initial SFT

Human preferences  
(~1M+?) 

New synthetic completions x n rounds

DPO, PPO, RAFT

Instruct-GPT

Llama-3

Twitter of Lambert, Nathan



From Genera-purpose Chatbot to Reasoning Model
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• One trend of LLM development: focusing on the reasoning capability to handle more 
complicated tasks 

GPT4-o1 Gemini-Thinking DeepSeek R1

• Preference is subjective, people are satisfied by a model with score 80. 



[LLM Step 1 Response]  is continuous, meaning 
 at  and  at .   

𝑓(𝑥)
𝑥 − 5 = 𝑎𝑥 + 3 𝑥 = 2 𝑥 − 5 = 2𝑥 − 𝑏 𝑥 = − 2

from sympy import symbols, Eq, solve 
x, a, b = symbols(’x a b’) 
Eq1, Eq2 = Eq(x-5, a*3 + 3), Eq(x-5, 2*x – b) 
print(solve(eq1, x), solve(eq2, x))

Topic #1: Multi-step Tool-Using Reasoning
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[Question Prompt] Let 

Find  if  is continuous. 𝑎 + 𝑏 𝑓(𝑥)

[Python Complier Feedback 1] 

```output (-8/(a-1), b-5)``` [LLM Step 2 Response] Thus,  when  and 
 when . We can now solve for  and .  

𝑥 = − 8/(𝑎 − 1) 𝑥 = 2
𝑥 = 𝑏 − 5 𝑥 = − 2 𝑎 𝑏

Eq3, Eq4 = Eq(-8/(a-1),2), Eq(b-5,-2) 
print(solve(Eq3, a), solve(Eq4, b))

[Python Complier Feedback 2] 

```output (-3, 3)``` [LLM Step 3 Response] With  and , .  𝑎 = − 3 𝑏 = 3 𝑎 + 𝑏 = 0

Initial  
Question

Tool-Callin
g

Tool-Feedback



Topic #2: Self-rewarding Correction
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From Genera-purpose Chatbot to Reasoning Model

14

• One trend of LLM development: focusing on the reasoning capability to handle more 
complicated tasks: 

(a) Ability to perform a task in multiple steps; 
- I.e., decompose the problem into subproblems, e.g., chain-of-thought reasoning;  
- Sequential decision making instead of bandit. 

(b) Ability to leverage external tools to facilitate reasoning 
- E.g., code complier, search engine, etc. 
- Need to consider the external observation. 

(c) Ability to self-correct the errors in previous attempts. 
- State transition for non-linear reasoning path. GPT4-o1 Gemini-Thinking DeepSeek R1

• Preference is subjective, people are satisfied by a model with score 80. 



Progress in Reasoning Model

15[1] Jason Wei, https://x.com/_jasonwei/status/1889096555254456397



Multi-step Tool-Using Reasoning  MDP
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State   𝑠1 = 𝑥

[LLM Step 2 Response]

[LLM Step 3 Response]

Action  𝑎1

Observation  𝑜1

State  𝑠2 = (𝑥, 𝑎1, 𝑜1)

Action  𝑎2

[Tool Step 2 Feedback] Observation  𝑜2

State 
 𝑠3 = (𝑥, 𝑎1, 𝑜1, 𝑎2, 𝑜2)

Action  𝑎3

The MDP Formulation 
• State  = question prompt   

• Action   

- : the LLM  

• Observation   

• State    

• Action   

• Observation   

• … 

• State 
   

• Action  

𝑠1 𝑥

𝑎1 ∼ 𝜋1( ⋅ 𝑠1)

𝜋

𝑜1 ∼ ℙ1( ⋅ 𝑠1, 𝑎1)

𝑠2 = (𝑥, 𝑎1, 𝑜1) = (𝑠1, 𝑎1, 𝑜1)
𝑎2 ∼ 𝜋2( ⋅ 𝑠2)

𝑜2 ∼ ℙ2( ⋅ 𝑠2, 𝑎2)

𝑠h = (𝑥, 𝑎1, 𝑜1, ⋯, 𝑎h−1, 𝑜h−1) = (𝑠h−1, 𝑎h−1, 𝑜h−1)
𝑎h ∼ 𝜋h( ⋅ 𝑠h)

[Question Prompt]

[LLM Step 1 Response]

[Tool Step 1 Feedback]



Learning Target: KL-Regularized RL
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• KL-regularized RL: find a policy maximizing the expected cumulative rewards minus a 
KL regularization with respect to a reference policy   

 

𝜋ref

max
𝜋

𝔼ℳ,𝜋  𝑢(𝑠𝐻, 𝑎𝐻)  − 𝜂 ⋅ ∑
h∈[𝐻]

KL(𝜋h( ⋅ 𝑠h), 𝜋ref,   h( ⋅ 𝑠h))

pU(w) := arg max
p

𝔼w∼p(⋅)[U(w) − ηKL(p( ⋅ ), p0( ⋅ ))] =
1

ZU
p0(w)exp( 1

η
U(w)),

max
p

𝔼w∼p(⋅)[U(w) − ηKL(p( ⋅ ), p0( ⋅ ))] = η ⋅ log ZU,

Gibbs distribution:

Minimum value:
ZU = ∑

w

p0(w) ⋅ exp( 1
η

U(w))



Learning Target: KL-Regularized RL
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• KL-regularized RL: find a policy maximizing the expected cumulative rewards minus a 
KL regularization with respect to a reference policy   

 

𝜋ref

max
𝜋

𝔼ℳ,𝜋  𝑢(𝑠𝐻, 𝑎𝐻)  − 𝜂 ⋅ ∑
h∈[𝐻]

KL(𝜋h( ⋅ 𝑠h), 𝜋ref,   h( ⋅ 𝑠h))

Vℳ,h(sh) = 𝔼ah∼πℳ,h,oh∼ℙh,⋯,aH∼πℳ,H[u(x, y) − η ⋅ ∑
h′ ≥h

KL(πh′ 
( ⋅ ∣ sh′ 

), πref,h′ 
( ⋅ ∣ sh′ 

)) sh]

Qℳ,h(sh, ah) = 𝔼oh∼ℙh,ah+1∼πℳ,h+1,⋯aH∼πℳ,H[u(x, y) − η ∑
h′ ≥h+1

KL(πh′ 
( ⋅ ∣ sh′ 

), πref,h′ 
( ⋅ ∣ sh′ 

)) sh, ah]

• : the expected return starting from  if we always play  for 
Vℳ,h(sh) sh πℳ,h′ 
h′ ≥ h

• : the expected return starting from  if we always play  for 
Qℳ,h(sh, ah) sh, ah πℳ,h′ 
h′ ≥ h + 1



KL-Regularized RL: The Optimality Condition
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Let’s consider a 2-step scenario first, denoting   

 

KL(𝜋h, 𝜋ref,   h |𝑠h) ≔ KL(𝜋h( ⋅ 𝑠h), 𝜋ref,   h( ⋅ 𝑠h)):

max
𝜋

𝔼ℳ,𝜋 [𝑢(𝑠2, 𝑎2) − 𝜂KL(𝜋2, 𝜋ref,   2 |𝑠2) − 𝜂KL(𝜋1, 𝜋ref,   1 |𝑠1)]
= max

𝜋
𝔼𝑠1∼𝑑0[[𝔼𝑎1∼𝜋1( ⋅ 𝑠1)[𝔼𝑜1∼ℙ1( ⋅ 𝑠1, 𝑎1)𝔼𝑎2∼𝜋2( ⋅ 𝑠2 )[𝑢(𝑠2, 𝑎2)] − 𝜂KL(𝜋2, 𝜋ref,   2 |𝑠2)] − 𝜂KL(𝜋1, 𝜋ref,   1 |𝑠1)]

Inner loop regarding   𝜋2
Closed-form optimal solution (Gibbs distribution): 

 𝜋∗
2 ( ⋅ 𝑠2) ∝ 𝜋ref, 2( ⋅ 𝑠2) ⋅ exp(

𝑢(𝑠2, ⋅ )
𝜂 ) .

Intermediate variables: 

 𝑉 ∗
2 (𝑠2): = 𝔼𝑎2∼𝜋∗

2( ⋅ 𝑠2 )[𝑢(𝑠2, 𝑎2)] − 𝜂KL(𝜋∗
2 , 𝜋ref,   2 |𝑠2), 𝑄∗

1 (𝑠1, 𝑎1): = 𝔼𝑜1∼ℙ1( ⋅ 𝑠1, 𝑎1)[𝑉 ∗
2 (𝑠2)] .



KL-Regularized RL: The Optimality Condition
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Let’s consider a 2-step scenario first, denoting   

 

KL(𝜋h, 𝜋ref,   h |𝑠h) ≔ KL(𝜋h( ⋅ 𝑠h), 𝜋ref,   h( ⋅ 𝑠h)):

max
𝜋

𝔼ℳ,𝜋 [𝑢(𝑠2, 𝑎2) − 𝜂KL(𝜋2, 𝜋ref,   2 |𝑠2) − 𝜂KL(𝜋1, 𝜋ref,   1 |𝑠1)]
= max

𝜋
𝔼𝑠1∼𝑑0[𝔼𝑎1∼𝜋1( ⋅ 𝑠1)[𝑄∗

1 (𝑠1, 𝑎1)] − 𝜂KL(𝜋1, 𝜋ref,   1 |𝑠1)]
Outer loop regarding   𝜋1

Closed-form optimal solution (Gibbs distribution): 

 𝜋∗
1 ( ⋅ 𝑠1) ∝ 𝜋ref, 1( ⋅ 𝑠1) ⋅ exp(

𝑄∗
1(𝑠1, ⋅ )

𝜂 ) .



KL-Regularized RL: The Optimality Condition
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  𝑉 ∗
h (𝑠h) ≔ 𝔼𝑎h∼𝜋∗

h( ⋅ 𝑠h )[𝑄∗
h (𝑠h, 𝑎h) − 𝜂KL(𝜋∗

h , 𝜋ref,   h |𝑠h)]

𝑄∗
h (𝑠h, 𝑎h) ≔

𝑢(𝑠𝐻, 𝑎𝐻) [if h = 𝐻],

𝔼𝑜h∼ℙh( ⋅ 𝑠h, 𝑎h)[𝑉 ∗
h(𝑠h+1)] [if  h < 𝐻]

𝜋∗
h (𝑎h 𝑠h) ≔ 𝜋ref, h(𝑎h 𝑠h) ⋅

exp(𝑄∗
h(𝑠h, 𝑎h)/𝜂)

𝑉∗
h(𝑠h)

Generalizing to  steps:𝐻

• The optimal policy is a layer-wise Gibbs distribution in terms of the Q value


• The optimal value is characterized by the reference policy due to the KL constraint 



Q Learning via Monte-Carlo Estimation
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• Q estimation via Monte Carlo: for a fixed step h and state-action pair , we can treat the future 
as a bandit (with only one step), where we have a new action . Then, 
we have

(sh, ah)
a = (ah+1, ⋯, aH) ∈ 𝒜H−h+1

Q⋆
h (sh, ah) = V⋆

h+1(sh+1) = η log 𝔼a′ ∼πref,h+1:H(⋅∣sh+1) exp( u⋆(sh+1, a′ )
η ),

• A practical algorithm:


• We sample N base trajectories per prompt;


• For each step, we sample M completions using  and use these completions to 
approximate the Q value.

πref,h+1:H

Q̂π
ℳ,h(sh, ah) =

1
M

M

∑
i=1

u(sh, ah, ci)

Zhang, H., Wang, P., Diao, S., Lin, Y., Pan, R., Dong, H., ... & Zhang, T. (2024). Entropy-Regularized Process Reward Model. arXiv preprint arXiv:2412.11006.
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• Policy Model : Mistral fine-tuned on MetaMATH


• Test benchmarks: MATH-500 and GSM8K


• PRM as a multi-turn chat, trained using the standard SFT training code


• Hard label: if there exists a correct trajectory, we label the step as + and - otherwise


•

π
Q Learning via Monte-Carlo Estimation
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• Model: Mistral fine-tuned on MetaMATH


• Test benchmarks: left: MATH-500; right: GSM8K


Q Learning via Monte-Carlo Estimation



KL-Regularized RL: Direct Preference Optimization
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  𝑉 ∗
h (𝑠h) ≔ 𝔼𝑎h∼𝜋∗

h( ⋅ 𝑠h )[𝑄∗
h (𝑠h, 𝑎h) − 𝜂KL(𝜋∗

h , 𝜋ref,   h |𝑠h)]

𝑄∗
h (𝑠h, 𝑎h) ≔

𝑢(𝑠𝐻, 𝑎𝐻) [if h = 𝐻],

𝔼𝑜h∼ℙh( ⋅ 𝑠h, 𝑎h)[𝑉 ∗
h(𝑠h+1)] [if  h < 𝐻]

𝜋∗
h (𝑎h 𝑠h) ≔ 𝜋ref, h(𝑎h 𝑠h) ⋅

exp(𝑄∗
h(𝑠h, 𝑎h)/𝜂)

𝑉∗
h(𝑠h)

Generalizing to  steps:𝐻

One key relationship: 𝑄∗
h (𝑠h, 𝑎h) = 𝜂 ⋅ log

𝜋∗
h(𝑎h 𝑠h)

𝜋ref, h(𝑎h 𝑠h)
+ 𝑉 ∗

h (𝑠h)

 

⇒         𝔼𝑜h∼ℙh( ⋅ 𝑠h, 𝑎h)[𝑉 ∗
h+1(𝑠h+1)] = 𝜂 ⋅ log

𝜋∗
h(𝑎h 𝑠h)

𝜋ref, h(𝑎h 𝑠h)
+ 𝑉 ∗

h (𝑠h),   if h < 𝐻

𝑢(𝑠𝐻, 𝑎𝐻) = 𝜂 ⋅ log
𝜋∗

𝐻(𝑎𝐻 𝑠𝐻)
𝜋ref, 𝐻(𝑎𝐻 𝑠𝐻)

+ 𝑉 ∗
𝐻(𝑠𝐻)
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One key relationship:

 

        𝔼𝑜h∼ℙh( ⋅ 𝑠h, 𝑎h)[𝑉 ∗
h+1(𝑠h+1)] = 𝜂 ⋅ log

𝜋∗
h(𝑎h 𝑠h)

𝜋ref, h(𝑎h 𝑠h)
+ 𝑉 ∗

h (𝑠h),   if h < 𝐻

𝑢(𝑠𝐻, 𝑎𝐻) = 𝜂 ⋅ log
𝜋∗

𝐻(𝑎𝐻 𝑠𝐻)
𝜋ref, 𝐻(𝑎𝐻 𝑠𝐻)

+ 𝑉 ∗
𝐻(𝑠𝐻)

 ⇒   𝑢(𝑠𝐻, 𝑎𝐻) = 𝜂 ∑
h∈[𝐻]

log
𝜋∗

h(𝑎h 𝑠h)
𝜋ref, h(𝑎h 𝑠h)

+ 𝑉 ∗
1 (𝑠1) + ∑

h∈[𝐻−1]
[𝑉 ∗

h+1(𝑠h+1)  −  𝔼𝑜′ h∼ℙh( ⋅ 𝑠h, 𝑎h)[𝑉 ∗
h+1(𝑠′ h+1)]]

When using code complier as the external tool, the 
observation  is typically deterministic 𝑜′ h ∼ ℙh( ⋅ 𝑠h, 𝑎h)

 This term is zero!⇒

Parameterize reward  by  
optimal policy  

𝑢
𝜋∗

KL-Regularized RL: Direct Preference Optimization



Multi-step Direct Preference Optimization (M-DPO)
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• Consider giving a dataset 

  𝒟 = {(𝑥𝑛, (𝑠𝑛,  𝑤
𝐻 , 𝑎𝑛,𝑤

𝐻 ), (𝑠𝑛,  𝑙
𝐻 , 𝑎𝑛,𝑙

𝐻 )):𝑛 ∈ [𝑁]} = {(question𝑛, winning𝑛,  losing𝑛):𝑛 ∈ [𝑁]}
• Under the BT model, the negative log-likelihood of obtaining this dataset 

  ℒ(𝒟; 𝑢) = − ∑
𝑛∈[𝑁]

log(𝜎(𝑢(𝑠𝑛,  𝑤
𝐻 , 𝑎𝑛,𝑤

𝐻 ) − 𝑢(𝑠𝑛,  𝑙
𝐻 , 𝑎𝑛,𝑙

𝐻 ))) 

•
If  is optimal, recall the obtained key relationship:  𝜋 𝑢(𝑠𝐻, 𝑎𝐻) = 𝜂 ∑

h∈[𝐻]

log
𝜋h(𝑎h 𝑠h)

𝜋ref, h(𝑎h 𝑠h)
+ 𝑉 ∗

1 (𝑠1)

• Reparameterization:  is canceled in the difference 

 

𝑉 ∗
1 (𝑠1)

ℒ(𝒟; 𝜋) = − ∑
𝑛∈[𝑁]

log 𝜎 𝜂 ∑
h∈[𝐻]

log
𝜋h(𝑎𝑛,𝑤

h 𝑠𝑛,𝑤
h )

𝜋ref, h(𝑎𝑛,𝑤
h 𝑠𝑛,𝑤

h )
− 𝜂 ∑

h∈[𝐻]

log
𝜋h(𝑎𝑛,𝑙

h 𝑠𝑛,𝑙
h )

𝜋ref, h(𝑎𝑛,𝑙
h 𝑠𝑛,𝑙

h )

• M-DPO: minimize the negative log-likelihood over , i.e.,  𝜋 min
𝜋

ℒ(𝒟; 𝜋)



Online M-DPO Boosts LLMs’ Reasoning Capabilities
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Base Model Method GSM8K MATH

Gemma-1.1-7B

SFT Checkpoint 77.5 46.1
Online Single-turn DPO (Iteration 3) 80.6 49.0

Online M-DPO (Iteration 1) 81.5 (↑4.0) 49.1 (↑3.0)
Online M-DPO (Iteration 2) 82.5 (↑5.0) 49.7 (↑3.6)
Online M-DPO (Iteration 3) 83.9 (↑6.4) 51.2 (↑5.1)

LLaMA-2-70B SFT Checkpoint 84.7 46.3
CodeLLaMA-2-70B SFT Checkpoint 84.6 50.7

Consistent 
improvement 
over iterations

Similar as models 
of 
 size10 ×

Surpass baseline 
ignoring multi-
step structure



Ablation on Sampling Strategy

29Xiong W, Shi C, Shen J, et al. Building math agents with multi-turn iterative preference learning, ICLR 2025.



Preference Learning Improves Top-n Responses

30Xiong W, Shi C, Shen J, et al. Building math agents with multi-turn iterative preference learning, ICLR 2025.



Deepseek-R1: Incentivizing Reasoning Capability in LLMs via 
Reinforcement Learning 

31
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Deepseek-R1: Incentivizing Reasoning Capability in LLMs via 
Reinforcement Learning 

- Deepseek-R1-Zero: training the base model using deep RL + rule-based reward 
- Deepseek-R1: cold start with SFT + deep RL + rule-based reward 
- Rule-based reward: 

- if the answer is provided in the specified format and is correct, r = 1.0 
- If the answer is provided in the specified format and is wrong, r = -0.5 
- If the response fails to provide a final answer, r = -1.  



Deepseek-R1 
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Prime: Leverage Implicit Process Reward

34
Cui, G., Yuan, L., Wang, Z., Wang, H., Li, W., He, B., ... & Ding, N. (2025). Process reinforcement through implicit rewards. arXiv preprint arXiv:2502.01456.
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Thank you!


