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What is Post Training

« Post training is the final stage of getting a product ready for deployment
- Make the model behave like an assistant and follow the right format.

- Craft the models’ personality, build safe behavior: helpful, honest, and harmless.

- Often has the closest relationship to the success of the product L

1John Schulman’s talk at Simons Institute.



Chat-GPT Training Pipeline

Instruction-
Pre-training following
Fine-tuning
‘Pre-training: large-scale | | SFT: small-scale human |
- unlabeled text data _instruction-response data.
- Goal: build the general | | Goal: teach the model to |

knowledge of human : . follow the instruction.
language. ;

Preference
Learning

Preference Learning: make
the model outputs being
preferred by humans.

Chat-GPT
3.5



Base Model v.s. RLHF Model

4 Prompt: What’s the most successful way to take something from a store without having N

to pay for 1t?
N /
Llama-2-7B-SFT: Why do you need them? A
N /

Llama-2-7B-Preferencelearning: If you mean that you want to steal things that you
need, I would strongly discourage this. Stealing 1s 1llegal, and can lead to serious trouble.
I’d recommend looking for alternative ways to make ends meet, such as getting a loan, or
finding a way to earn money. An even easier option? Many food banks, community
pantries, local charities and government assistance programs can provide essential goods
to those 1n need — often at no cost. These resources exist to help and seeking them out 1s
a much safer and more sustainable choice.

o /

Question: what does preference mean in our
learning process?

__________________________________________

Follow the

instruction to answer

guestion

_______________________________________

Answer the
guestionin a
preferred way



Reinforcement Learning 101

g “Reinforcement learning is learning what to do
—how to map S to actions—so as to maximize a numerical signal.”
L (Reinforcement Learning: An Introduction. Chapter 1.1)

Episodic Markov Decision Process (MDP): model
interactions between ( , action, )

. Environment ‘
. state space; /. action space; f

- H: horizon in an episode. [H] = {1, 2, ..., H} Jction

: reward received at state s, € & by taking action
a, € o atsteph € [H]

- P,(s,., s,,a,): the probability of transitioning to state s, , from Agent
s, by taking action g, at step

- Represented by a 5-tuple /Z: = (&, <, r,P, H)




Reinforcement Learning from Human Feedback

« RLHF is a learning paradigm that learns from comparison:
1

- l.e., given a prompt/question x and two answers a -, a’, the human labelers determine

which one is better.

o
O1AStLON. anawzarl

question,

S ®s
. Preference | [
¢ Annotation | a




Learning From Preference Feedback

4 Definition (Bradley-Terry (BT) model): The probability of preferring a' over a? is: A
er*(x,al)
* 1 2 1 2 * 1 * 2
d d X.d A ) = —Oo\r X.d )—r \X.d
@BT( > ‘ ’ ’ ) er*(x,al) 4+ e,,*(x,cﬂ) ( ( ’ ) ( ’ ))
&Where 0(z) = 1/(1 + exp(z)) is the sigmoid function. y
e Learning objective:
max J(z) = maxE, ;| E . olr (5 a)] —nKL(#(- | x), me( - | )|
T T : g g -
Optimize Reward Stay Close to

e Single-step bandit problem.

Bradley, Ralph Allan, and Milton E. Terry. "Rank analysis of incomplete block designs: I. The method of paired comparisons." Biometrika, 1952.



Instruct-GPT Framework to Make Chat-GPT

e Preference dataset collection

1 2

x ~ dy, a,a”~m. - x), + Human labeling al

> a?

o Training a proxy reward r(x, a) ~ r*(x, a) by maximum likelihood estimation (MLE)

We add a linear head to the original LLM and maximize

£(0) = Z log a(rg(x, a") — ryx, al)> .

x,a",a'eP
e Optimize model by deep RL method PPO (Reinforce, GRPO)
n(a | x)

ﬂref(x ‘ Cl)

r(x,a) = r(x,a) —nlog

Ouyang, Long, et al. "Training language models to follow instructions with human feedback."” NeurlPS, 2022.



Two Eras of RLHF: from Instruct-GPT to Llama3

Human instruction

~10K
PPO
Base Model >  SFT Model 7 > Aligned Model
| BT Reward Instruct-GPT
Model
Human preferences
~ 100 K
Human & synthetic New synthetic completions X n rounds
instruction
(~ IM+?)
T DPO, PPO, RAFT
Base Model » Aligned Model n x > Aligned Model n+1 »  Final Model
Initial SFT
Human preferences | BT RM, General Llama-3
(~1IM+?) PM, LLM Judge
Twitter of Lambert, Nathan 10




From Genera-purpose Chatbot to Reasoning Model

 Preference is subjective, people are satisfied by a model with score 80.

« One trend of LLM development: focusing on the capability to handle more
complicated tasks

B0 &

11



Topic #1: Multi-step Tool-Using Reasoning

: Initial
[Question Prompt] Let Question [LLM Step 1 Response] f(x) is continuous, meaning

|

ax+3, ifx>2, = x—5=ax+3atx=2andx-5=2x—-batx=-2.
flx) = - zx_Sb lﬁ —2s2x32, (from sympy import symbols, Eq, solve
[ X~ ek X, a, b = symbols(’x a b"’)

Find a + b if f(x) is continuous. Eql, Eq2 = Eq(x=5, a*3 + 3), Eq(x=5, 2xx - b)
\print(solve(eql, x), solve(eg2, X))

<I>

[Python Complier Feedback 1] —

PY — _ —
““output (-8/(a-1), b-5)"" [LLM Step 2 Response] Thus, x = — 8/(a — 1) when x = 2 and
.2 x = b—5when x = — 2. We can now solve for a and b.
a Eq3, Eq4 = Eq(-8/(a-1),2), Eq(b-5,-2)
print(solve(Eq3, a), solve(Eg4, b))
[Python Complier Feedback 2] <
PY il [LLM Step 3 Response] Witha=—-3andb=3,a+ b =0.

“output (-3, 3)™



Topic #2: Self-rewarding Correction

User: A particular star has an absolute magnitude M = —7. If this star is observed in a galaxy that is at a distance of
3Mpc, what will its apparent magnitude be?

Please reason step by step, and put your final answer within —. (prompt x)

Assistant: To determine the apparent magnitude of the star, we can use the distance modulus formula : m — M =
5log,,(d) — 5 where:m is the apparent magnitude,M is the absolute magnitude,d is the distance to the star in parsecs....
The apparent magnitude of the star, when observed from a distance of 3 Mpc, is approximately 7.58. So the final answer

is: | 7.58 |. (initial response a')

To verify the correctness of the solution, let’s recheck the steps ... So the final answer is: | 20.39 |. The self-evaluation is:
[VERIFY] wrong. (self-rewarding evaluation y")

Let’s correct it step by step. Given: Absolute magnitude ... The correct apparent magnitude 1s approximately 20.39. So
the final answer is: | 20.39 |.

(revised response a?).
Since the steps and calculations are correct, the self-evaluation is: [VERIFY] correct. (self-rewarding evaluation y°)

Table 1. An example of the self-rewarding reasoning path. We omit the detailed reasoning path for a clear presentation. The full
trajectory 1s available at Table 13 in Appendix.

13



From Genera-purpose Chatbot to Reasoning Model

 Preference is subjective, people are satisfied by a model with score 80.

« One trend of LLM development: focusing on the capability to handle more
complicated tasks:

(a) Ability to perform a task in ;
- |l.e., decompose the problem into subproblems, e.g., chain-of-thought reasoning;

- Sequential decision making instead of bandit.

(b) Ability to to facilitate reasoning
- E.g., code complier, search engine, etc.
- Need to consider the external observation.

(c) Ability to the errors in previous attempts.

- State transition for non-linear reasoning path.
14



Progress in Reasoning Model

Progress on Al benchmarks in the past five years

Trivia questions
80 T (TriviaQA)

A (MMLU) " /.~  Graduate-level

40 -

Prestigious math
y exam (AIME) /]
20 - Competition :

VE
math (MATH) SWE tasks (SWE

bench verified)

2020 2021 2022 2023 2024

[1] Jason Wei, https://x.com/_jasonwei/status/1889096555254456397




Multi-step Tool-Using Reasoning -0 MDP

The MDP Formulation
[=Y t. P t e
@ [Ques |or|1 rompt] | » State s, = question prompt x
[LLM Step 1 Response] * Actionap ~ (- |sy)
| l - 7 the LLM
=| | [Tool Step 1 Feedback] :
| « Observation 01 ~ Pl( . ‘Sla al)
- | l e State Sy = (X, aq, 01) — (Sl9 dy, 01)
=l LLM Step 2 Response i
| p | ponse] 1 e Actiona, ~ 7,(- |s,)
% [Tool Step 2 Feedback] » Observation o, ~ Pz( ' ‘ 52 a2>
_____________________________________________________________ b
aoc Y l
2% | [LLM Step 3 Response] + oState

Sp = (x, dy, 01, ”'aah—1»0h—1) — (Sh—1»ah—1»0h—1)

¢ Action ah ~ ﬂ'h( . ‘Sh)



Learning Target: KL-Regularized RL

o KL-regularized RL: find a policy maximizing the expected cumulative rewards

with respect to a reference policy

max _%,71' U(SH, aH) —

1 1
Gibbs distribution: () := argmaxE,,_,, | V0w = iKL(p(-).po( ) | = = pywiexp(—Uw) ).
p U n

Minimum value: max [EWNP(-)[U(W) — ﬂKL<P( - ), Dol - ))] =n-logZ,,

1
p Zy= ) pow) - exp(;U(w))



Learning Target: KL-Regularized RL

o KL-regularized RL: find a policy maximizing the expected cumulative rewards

with respect to a reference policy

max _%,71' U(SH, aH) —

o Q 415, a;): the expected return starting from s, a,, if we always play 7 4, ;. for A" > h + 1

Q/%,h(sh’ a,) = = 0p~P Uy 1 ~T gy 15 AT gy 1 [M(xa y)—1 2 KL(”h'( | Sy, ﬂref,h’( - | Sh')) Shs Clh]

V4 1(5,): the expected return starting from s, if we always play 7 , , for h" > h

Vb0 = B gy 4050 = 11 2 KL 53, T 5p) [ 5]



KL-Regularized RL: The Optimality Condition

Let’s consider a 2-step scenario first, denoting KL (7, 7e¢ 5, s5) = KL(nh( . ‘sh),zzref, n( ‘sh)>:

T

= Imax
T

_SlNdO [

max[k , , [u(sz, a2) — HKL(ﬂza Tref, 2 Sz) — ”KL<ﬂ19ﬂref, 1 Sl)]

a1N7T1< ’ ‘S1>

01NP1(' ‘Sl,al> u(SZ’ az)

Closed-form optimal solution (Gibbs distribution):

u(sy, - )

Intermediate variables:

V;(Sz)l =

azN

[u(sz, az)] —nKL( , pef. 2 Sz),

01NP1( ’ ‘Slval) [

— nKL(7, g, 1 1)

19



KL-Regularized RL: The Optimality Condition

Let’s consider a 2-step scenario first, denoting KL (7, 7e¢ 5, s5) = KL(nh( . ‘sh),yzref, n( ‘sh)>:

max[k , , [u(sz, az) — HKL(@» Tref, 2 Sz) — ﬂKL(ﬂlaﬂref, 1 51)]

T

= Imax
T

SlNd()

_alNﬂ-l< | ‘S1> [ ] —_ }’]KL(ﬂ'l, ﬂref, 1 Sl)

— _
v~ .
Outer loop regarding r,

Closed-form optimal solution (Gibbs distribution):

ﬂ{k( ' ‘S1> X ﬂref,l( ' ‘S1> °€Xp( " )




KL-Regularized RL: The Optimality Condition
(1) [if h = H].

(a7 ()

.eip< | /n)

Generalizing to H steps: =

 The optimal policy is a layer-wise Gibbs distribution in terms of the Q value

 The optimal value is characterized by the reference policy due to the KL constraint



Q Learning via Monte-Carlo Estimation

» Q estimation via Monte Carlo: for a fixed step h and state-action pair (s,, a;), we can treat the future

as a bandit (with only one step), where we have a new action a = (ah+1, oo, dyy) € o=+l Then,
we have

* /
U (Sp41,a)
Q;(Sh, ah) — V;Z:‘I(Sh_l_l) = }/] log _a/N ref,h+1:H(°|Sh+l) eXP( 7] >’

e A practical algorithm:

 We sample N base trajectories per prompt;

« For each step, we sample M completions using 7.¢ ;. 1.y and use these completions to

approximate the Q value. Iy

n 1
S @) = — ) Uy, @ )
| M =1

Zhang, H., Wang, P,, Diao, S., Lin, Y., Pan, R., Dong, H., ... & Zhang, T. (2024). Entropy-Regularized Process Reward Model. arXiv preprint arXiv:2412.11006.



Q Learning via Monte-Carlo Estimation
 Policy Model & Mistral fine-tuned on MetaMATH

* Test benchmarks: MATH-500 and GSM8K
 PRM as a multi-turn chat, trained using the standard SFT training code

 Hard label: if there exists a correct trajectory, we label the step as + and - otherwise

| =
{"role": "user", "content": "Convert the point $(0,3)$ in rectangular coordinates to polar coordinates. To
{"role": "assistant", "content": "+"},
{"role": "user", "content": "In this case, the rectangular coordinates are $(0,3)$, so $x = 0% and $y = 3%.
{"role": "assistant", "content": "+"},
{"role": "user", "content": "First, we calculate $r$:\n\\[r = \\sqrt{0”2 + 372} = \\sqrt{9} = 3\\1"},
{"role": "assistant", "content": "+"},
{"role": "user", "content": "Next, we calculate $\\theta$:\n\\[\\theta = \\arctan \\frac{3}{0}\\1"},
{"role": "aSSiStant", "content": u+u}'
{"role": "user", "content": "Since the tangent function is not defined for $x = 0%, we need to use a specia.
{"role": "assistant", "content": "+"},
{“IOlE": "USEI", "content": "In this case, $y =3 @$, SO $\\theta — \\frac{\\pi}{2}$,"},
{"role": "assistant", "content": "+"},

{"role": "user", "content": "So, the polar coordinates equivalent to $(0,3)$ are $\\boxed{(3,\\frac{\\pi}{2
{"role": "assistant", "content": "+"},



Q Learning via Monte-Carlo Estimation
« Model: Mistral fine-tuned on MetaMATH

* Test benchmarks: left: MATH-500; right: GSM8K

A —a 0.92 4 ~%*- PRM ___.._-A-'—“’"_'*r"""
0.45 - a—E— T —&- Majority Voting 4”'/‘
/~/ _a-—-%--a 0904 ~™- ORM-Pairwise-BT A~ .‘___,...-—-l----..-,_.
. ” / "
> ) PE- . ' _ - )
< 0.40 - ./,r—-“---l-— W > 0.88 ,/;,f
— 7 , © .///
§ ”, 3 /é/
. g -
. " R R g 088
S 0.35 - /1 e % 4
I| /',’ ‘/ s 0.84 - /,/ .)~._*__.__‘.\. ‘_‘.__..—_.*
= - ! ﬁ--l W 7 / S~
3 L 77 T8 e ;‘ «
= ok S A T T 0.82 - —A
B 0301 £ = 7 /o
= « N = 0804 £ /
—& - PRM \‘ / /
— - Majority Voting Ssol - --a ‘_ '
0.25 - .- . 0.78 1 th=r==-i
—H®- ORM-Pairwise-BT \ S e Y P!
\\ . .\\§ /”.‘ss.___._—-—r’ ~~"
il s [ 0.76 - w
1 2 4 8 16 32 64 128 256 512 1024 1 2 4 8 16 32 64 128 256 512 1024

Best of N Best of N



KL-Regularized RL: Direct Preference Optimization

. (511> an)
Generalizing to u steps: =
(]

— _ah’“m}k(- ‘Sh )[ - }’]KL<7Z';:, Mref, h Sh)]
One key relationship: = 11+ log ﬂ;’k(ah‘sh) + V' (5, )
— h
ﬂref,h(ah ‘ Sh)

# L

0~ Py - ‘Sh» ay) [

o (a,|s
Mref, h(ah ‘ Sh)

n*(a Ry )
. H H‘ H V}i,(SH)



KL-Regularized RL: Direct Preference Optimization

One key relationship:

ﬂ;f(ah‘sh) * |
0p~1P (- ‘Sh,ah)[ ] =1 - log + V; (Sh>, ith< H

Tyef, h(ah ‘ Sh)

E;I(CZH‘SH) . (S )
H\SH

”if(ah Sh)
= =N Z lOg[ ‘ ] T V1>X<<S1> Z [ _h"’h R ah
N—

Tref, h(ah ‘ Sh)

he[H] he[H—-1]
7
"
Parameterize reward u by When using code complier as the external tool, the
optimal policy 7* observation o/ ~ 7 - ‘sh, a,) is typically deterministic

. This term is zero!

26



Multi-step Direct Preference Optimization (M-DPO)

Consider giving a dataset

92={(x”, ] ):nE[N]}={(question”, : ):nE[N]}

Under the BT model, the negative log-likelihood of obtaining this dataset

g(@;u)z—n%]log<a< ~ )) ‘
[ ACAEN

Tref, h(ah ‘ Sh)

If 7 is optimal, recall the obtained key relationship: u(sH, aH) = Z log
he|H|

]+ Vf(sl)

Reparameterization: V; (s,) is canceled in the difference

ﬂh ﬂh

3(9;7:) = — Z log| o| 7 Z log

ne[N] he|H | Tref, h he[H] Tref, h

: minimize the negative log-likelihood over 7, i.e.,



Online M-DPO Boosts LLMs’ Reasoning Capabilities

Base Model Method GSMS8K MATH inél_J_r_F;é_S_S_ io_é;e_l_lﬁ_e“i
SFT Checkpoint 77.5 46.1 " jgnoring multi-

Online Single-turn DPO (lteration 3) 30.6 49.0 . step structure

Gemma-1.1-7B Online M-DPO (Iteration 1) 81.5(1T4.0) [49.1(13.0) .. R |
Online M-DPO (Iteration 2) 82.5(15.0) | 49.7 (13.6) &  consistent

: : . Improvement |

Online M-DPO (lteration 3) 83.9 (1°6.4) | 51.2 (15.1) over iterations |

[LaMA-2-70B SFT Checkpoint 84.7 46.3 - Similar as models !
CodelLLaMA-2-70B SFT Checkpoint 84.6 50.7 i of §
| 10x SIZE ,

———————————————————————



Ablation on Sampling Strategy

MATH Test Accuracy

s14 === SFT 3 epochs
—e— Mixture Sampling
- On-policy Sampling

Accuracy
& 5

IS
~

46 -

45 A

lteration

Figure 4 | The plot of test accuracy on MATH dataset in terms of training iterations with different
sampling strategies.

Xiong W, Shi C, Shen J, et al. Building math agents with multi-turn iterative preference learning, ICLR 2025.



Preference Learning Improves Top-n Responses

GSM8K Test Accuracy MATH Test Accuracy
90 1
¥
05 - 30 -
2 90- = 70
- -
60 -
© 85 &
80 —e— Gemma-7B SFT 50 —e— Gemma-7B SFT
Gemma-7B M-DPO + Fixed Reference - - Gemma-7B M-DPO + Fixed Reference
—e— Gemma-7B M-DPO + Update Reference —e— Gemma-7B M-DPO + Update Reference
40 1
1 2 4 8 16 32 04 1 2 4 8 16 32 64
n: the number of candidates n: the number of candidates

Figure 2 | The pass@n rate with respect to the number of candidates n. We evaluate the models using
temperature 0.7 following the previous works Shao et al. (2024); Toshniwal et al. (2024). We notice
that preference learning only improves the metric pass@n when n is relatively small.

Xiong W, Shi C, Shen J, et al. Building math agents with multi-turn iterative preference learning, ICLR 2025. 30



Deepseek-R1: Incentivizing Reasoning Capability in LLMSs via

Reinforcement Learning

DeepSeek-V3

OpenAl-ol-mini

DeepSeek-R1-32B

OpenAl-01-1217

@##4 DeepSeek-R1

31

SWE-bench Verified
Resolved

MMLU
(Pass@1)

23
=
AP

A .

QA Diamond
Pass@1

7///////////////////////////////1@

Figure 1 | Benchmark performance of DeepSeek-R1.
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Deepseek-R1: Incentivizing Reasoning Capability in LLMs via
Reinforcement Learning

Deepseek-R1-Zero: training the base model using deep RL + rule-based reward
Deepseek-R1: cold start with SFT + deep RL + rule-based reward
Rule-based reward:

if the answer is provided in the specified format and is correct, r = 1.0

If the answer is provided in the specified format and is wrong, r =-0.5

If the response fails to provide a final answer, r = -1.

32



Deepseek-R1

The pass@1 accuracy tested with greedy decoding.

Qwen Math

Llama-3.1-
70B-Instruct

DPO-R1-Zero

PPO-R1-Zero

AIME 2024

23.3

16.7

26.7

43.3

MATH 500

65.4

64.6

76.8

79.4

AMC

47.5

30.1

62.5

62.5

Minerva Math

9.9

35.3

30.9

33.1

OlympiadBench

23.4

31.9

37.9

40.7

Average

33.9

35.7

47.0

51.8
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Prime: Leverage Implicit Process Reward

Train as an ORM

{ T ] Forward pass on
Y ORM data to obtain
implicit reward

ms(Y)

Tref (Y)

\ 79(y) := flog

‘CCE (ch (Y) 9 l)

A
Train an ORM

with vanilla
ORM loss
(e.g., CE loss)

l ] I Outcome label

Inference as an Implicit PRM

[ / J Log-likelihood ratio
L Y\ on partial response
represents Q value

> (1() Y<t, ljt . Z )’1( g O jl’y<z)

!
yl Tref /z‘y<z)
Ths yl’t /. Derive implicit process
reward from Q value:
1
/ ri(y) i= Blog WY <)
Yn Tref (Yt Y <t))

[ ! !
y T ylyQ ol Ul = yn

y,@ can be either a single token or a step

Cui, G., Yuan, L., Wang, Z., Wang, H., Li, W., He, B., ...

Score

Training Rewards (10-step Moving Average)

0.50 -

0.48 -

0.46 -

0.44 -

0.42 -

0.40 -

0.38 -

0.36 -

—— OV Only
—— PRIME

6.9% Higher

100 150 200
Steps

& Ding, N. (2025). Process reinforcement through implicit rewards. arXiv preprint arXiv:2502.01456.
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Thank you!



