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* Introduction (What is ICL?)

* Paper 1: Theoretical Foundations ICL as
mplicit Bayesian Inference

e Paper 2: What drives ICL performance?

* Paper 3: Exploring Many Shot ICL
 Conclusion
* Discussion



U IVERSITY
AilE IRGINIA

2!

* In-context learning: Conditioning on examples to make
predictions on test examples without optimizing parameters

o Popularized in original GPT3 paper
o Works with Large LMs, no optimized of parameters

o Notable few-shot accuracies on NLP tests (Brown et al.
2020)

. . . Circulation revenue has increased by 5%
Circulation revenue has increased by in Finland. // Positive

5% in Finland. // Finance
Panostaja did not disclose the purchase

They defeated ... in the NFC price. // Neutral

Championship Game. // Sports
Paying off the national debt will be

Apple ... development of in-house extremely painful. // Negative

chips. /f Tech
The company anticipated its operating

The company anticipated its operating profit to improve. /f
profit to improve. //

U | s
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Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.
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5+ 8 =13 gaot == goat thanks => merci
7+2=20 sakne => snake hello == bonjour
1+8 =1 brid == bird mint == menthe
3+4=7 fsih == fish wall == mur

+ 8 = 14 dcuk => duck otter => loutre
9+ 8 =17 emihp == chimp bread == pain
sequence #1 sequence #2 sequence #3

"During unsupervised pre-training, a language model develops a
broad set of skills and pattern recognition abilities. It then uses
these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning” to
describe the inner loop of this process, which occurs within the
forward-pass upon each sequence" (Brown et al 2020)
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* Allows users to quickly build models for a new
use cases without fine-tuning and storing new
parameters for each novel task.

* On many NLP benchmarks, ICL competitive
with models trained with much more labeled
data and is state of the art on LAMBADA and
TriviaQA

o ICL is essential for application tasks (app design

mockups, website design, spreadsheet novel
programming etc.)
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* LM not explicitly trained for learning

 Prompts differently formatted than NLP pretraining
documents

Pretraining documents In-context learning prompt

Albert Einstein was a German theoretical
physicist, widely acknowledged to be oneof & = ., AlbertEinstein was German \n
the greatest physicists of all time. Einstein is U \Mahatma Gandhi was Indian \n
best known for developing the theory of Marie Curie was

relativity, but he also ....
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e Bayesian Framework (Inference of Latent
Concepts)

1. Pretraining documents
are conditioned on a
latent concept (e.g.,
biographical text)

Albert Einstein was a German theoretical physicist, widely
acknowledged to be one of the greatest physicists of all time.
Einstein is best known for developing the theory of relativity, but
he also ....

Concept
(e.g., wiki bio)

Input (x) Output (y)  Delimiter

2. Create independent Albert Einstein was German \n
examples from a shared /

concept. If we focus on full
names, wiki bios tend to

Concept

relate them to nationalities. (e.g., wiki bio) Mahatma Gandhi was Indian ik
\ .brilliant?
i i ?
Marie Curie was Polish?

3. Concatenate examples into a prompt and predict next word(s). Language model (LM) implicitly
infers the shared concept across examples despite the unnatural concatenation

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curiewas =—>| LM |—> Polish
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* Proposes a framework in which LM uses ICL to locate
a previously learned concept to do ICL task

* Model generates predictions based upon located
latent context rather than pre-trained task-specific

model

* Locating learned capabilities can be mathematically

formulized as Bayesian inference

Albert Einstein was a German theoretical physicist, widely
acknowledged to be one of the greatest physicists of all time.
Einstein is best known for developing the theory of relativity, but
he also ....

LM

6?

- HMM(O)

made important

contributions to

— the development
of quantum
mechanics.
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* Since sentences from pretraining documents
sharing a concept (long-term coherence)

o Example Concept O ( wiki bio text)

Albert Einstein was a German theoretical physicist, widely
Concggt 9 — |Hvm(e)| = acknowledged to be one of the greatest physicists of all time.
(e.g., wiki bio) Einstein is best known for developing the theory of relativity, but
he also ....
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* ICL emerges when LM infers shared concept 6 from IC
examples
* LM works if signal around theta is greater than noise from low
probability transitions

LM

Albert Einstein was German \n
Mahatma Gandhi was Indian\n =——>| 6*? = HMM(8")| —> Polish
Marie Curie was

00D low-prob transitions
between examples

ATA!

Albert Einstein was German \n Mahatma Gandhi was Indian \n Marie Curie was

In-distribution transitions
reveal information about 8
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* Pretraining Distribution (p): assume that pretraining documents are
generated by first sampling of latent concept, and then generated by

conditioning on latent concept.
o Data/LM large enough so that LM fits pretraining distribution

exactly

p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept).
concept



* Question of ICL is characterizing p(output|prompt) under the
pretraining distribution

* "If p(concept|prompt) concentrates on the prompt concept
with more examples, then the LM learns via marginalization

by “selecting” the prompt concept."

p(output|prompt) = / p(output|concept, prompt)p(concept|prompt)d(concept).

concept
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e Each pretraining documentisalength T
sequence sampled by

p(olv"'aoT) - / p(ola"'70T|0)p(9)d97
0c©

* Assumption of paperis that p(ol,...0T) is defined by Hiden Markov
Model (HMM). The concept Theta determines transition probability
matrix of HMM hidden states

Concept 0
(e.g., wiki bio)

Albert Einstein was a German theoretical physicist, widely

— |HMm(0)| — acknowledged to be one of the greatest physicists of all time.
Einstein is best known for developing the theory of relativity, but
he also ....
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Properties (s)

Mwaine FArstname Astame Notkenziny Linking ward
Memory matrix o \; \n Albert Einstein German was e
€ W Mahatma  Gandhl Indian was
p-
S .
-
Empirical HMM model (Prompt distribution)
@ Transition matrix for properties ()
§= 2 3 5 4 1 2 8 5 4 1
Hidden
states
v= 1 1 1 1 1 2 2 2 2 2
Prompt  M[v,, 5.] =  Albert Elnstelnwas  German \n  Mahatma Gandhiwas Indian  \n
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arg max p(y|Sn, Trest) — arg max pprompt(y|xtest)
Y Y

The prompt consists of a sequence of training examples (Sn) followed

by the test example xtest: [Sn, xtest] = [x1, y1, odelim, x2, y2, odelim, ..
, Xn, yn, odelim, xtest] ~ pprompt.

More examples means more signals for Bayesian inference which

means smaller error

As n goes to infinity the incontext prediction asymptotically gets to the
expected error
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* Synthetic (non-human readable) dataset of
sequences generated by admixtures of HMMs

* Desighed to mimic different knowledge
retrieval tasks

* Pre-Training: uniform mixture of HMMs over
5 concepts using 1000 pretraining documents
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Accuracy is enhanced with:

* Number of examples and parameters

e LSTMs instead of Transformers

Transformer
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P1. Is HMM assumption important? (Ablation Study)

When pretrained on
only one concept, ICL
fails
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When prompts are from random, not before
seen concepts, ICL fails
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Num examples

Pretraining of 4 layer Transformer on only one concept
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P1.1s HMM assumption important? (Ablation Study)

When pretraining data is made from
random transitions, ICL fails

0 20 40 60
Num examples

~ X XX
I

= 00 Ul W

o



2= [ NIVERSITY
3lIE “7\/TIRGINIA

* |n context learning emerges when texts are
modeled as HMMs with sufficiently
distinguishable concepts

* Language models are recognizing previously
seen concepts instead of learning patterns live
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e Paper does not really study interactions with
true natural language.

e The HMM model can't really cover
generalizations to truly novel tasks
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Paper 2: "Rethinking the Role of
Demonstrations: What Makes In-Context
Learning Work?"



Sy U IVERSITY

IRGINIA

In Context Learning

A new paradigm in NLP where LLMs make predictions based on context augmented with
just few training examples(demonstrations) --> lower computation costs

Then LLMs extract patterns from the examples provided in the context and use them to

complete complex NLP tasks by conditioning on examples (demonstrations) without fine-
tuning.

Also known as few-shot learning, is where a few examples of input-label pairs are supplied
to the model as part of the prompt.

A frozen LM performs a task only by conditioning on the prompt text.

Definition of ICL: Learning from input-output examples without weight updates.

Demonstrations
Circulation revenue has increased by 5% in Finland. \n Positive
Panostaja did not disclose the purchase price. \n Neutral
Paying off the national debt will be extremely painful. \n Negative
The acquisition will have an immediate positive impact. \n

Test input ‘

Prediction  Positive

Figure 2: An overview of in-context learning. The
demonstrations consist of k input-label pairs from the
training data (k = 3 in the figure).
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Terminology

Prompt The input text that specifies the task.

Example(s) included in the prompt to show the model

Demonstration
how to perform the task.

The number of demonstrations/examples given in the
prompt (zero-shot, one-shot, few-shot, many-shot).

Shot

Without Demonstration (0-shot): With Demonstration (1-shot):

e Prompt: “Translate ‘Hello” to French”

o * Prompt: “Translate the following to French: ‘| am
e Model Response: “Bonjour.

happy.”

Example: ‘Good morning’ = ‘Bonjour’. Now translate |

727

am happy’.
e Model Response: “Je suis heureux.”




A
fili RSN

Demonstration

1. Input-label mapping: The process
of associating each input with the correct
label or output in a dataset.

2. Distribution of input: how the text
is structured, organized, or presented

3. Label space: The set of all possible
labels/outputs/categories that can be
assigned to an input.

4. Format: The structure or
representation of the input data and its
corresponding label.

Demonstrations

Distribution ofinputs Label space
| Circulation revenue has increased by 5% in Finland. \n Positive |
Format
| Panostaja did not disclose the purchase price. \n Neutral | (The use
| Paying off the national debt will be extremely painful. ~ \n Negative | gfpgjrs)
Test example Input-label mapping
| The acquisition will have an immediate positive impact. \n ? |

Figure 7: Four different aspects in the demonstrations:
the input-label mapping, the distribution of the input
text, the label space, and the use of input-label pairing
as the format of the demonstrations.
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Experiment setup

“To test their hypothesis, the researchers:

e 12 LMs (GPT-3, GPT-J, etc.)
2 inference methods: direct and channel

* Evaluation : 26 datasets that are true-low (x, y)=(“A three-hour cinema master class.” , “It was great.”)
resource datasets and include GLUE and o Input Output

SuperGLUE and covers diverse domains
of science, social media, finance and ...

A three-hour cinema master class. It was great.

LM
P(x|y)P(y) o P(x|y)

It was great. A three-hour cinema master class.

e 16 demonstrations

* Run 5-times
Figure 1: An illustration of the direct model and the

e Classification and Multi-choice tasks channel model for language model prompting in the
sentiment analysis task.

 Compared ICL with gold labels vs.
random labels vs nothing
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Role of Input-Label Mapping

* In-context learning works even with random labels. (don’t rely on the correct input-label mapping.)

* Randomly assigned labels does not decrease model’s performance too much

Gold labels
X1yl
X2y2
X3y3

Random labels
X1y2
X2vy3
X3yl

Macro-F1 (%)

Classification

[ No Demos

RN |

Demos w/ gold labels &% Demos w/ random labels

MetalCL (774M)

GPT] (6B) GPT-3 (175B)
Multi-choice

70

Accuracy (%)
> [ (S -] (=2}
o w o w o w

[ No Demos

w
wu

Demos w/ gold labels # ¥ Demos w/ random labels

J

MetalCL (774M)

GPT] (6B) GPT-3 (175B)
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GOLD vs Random vs NON

(1] Gold labels (correct answers)

(2] Random labels (incorrect answers assigned randomly, the same label space)

(3] No demonstrations (zero-shot learning)

 Replacing gold labels with random labels had minimal impact on model performance

Classification
v No Demos Demos w/ gold labels Demos w/ random labels
5!
=50
5 4
I-:; 45
g 40
]
235
30
o Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel
GPT-2 GPT-2 MetalCL MetalCL GPT] GPT] fairseq 6.7B  fairseq 6.7B  fairseq 13B fairseq 13B GPT-3 GPT-3
Multi-choice
. No Demos Demos w/ gold labels Demos w/ random labels
5
~60
g
255
o
g
350
]
<as
40
3 Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel Direct Channel
GPT-2 GPT-2 MetalCL MetalCL GPT] GPT] fairseq 6.7B  fairseq 6.7B  fairseq 13B fairseq 13B GPT-3 GPT-3

Figure 3: Results when using no-demonstrations, demonstrations with gold labels, and demonstrations with ran-
dom labels in classification (top) and multi-choice tasks (bottom). The first eight models are evaluated on 16
classification and 10 multi-choice datasets, and the last four models are evaluated on 3 classification and 3 multi-
choice datasets. See Figure 11 for numbers comparable across all models. Model performance with random
labels is very close to performance with gold labels (more discussion in Section 4.1).
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GOLD percentages effects

Bl 100% correct WM 75% correct 50% correct 25% correct 0% correct No Demos

MetalCL (Classification) GPT-]J (Classification) MetalCL (Multi-choice) GPT-J (Multi-choice)

Figure 4: Results with varying number of correct labels in the demonstrations. Channel and Direct used for
classification and multi-choice, respectively. Performance with no demonstrations (blue) is reported as a reference.

0% correct labels performance is not too much different with the 100% correct
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GOLD percentages effects

Increasing the number of demonstrations increase the performance, not too much
difference between random and gold

Classification

=23
o

Multi-choice

(=2}
(=1

o

w
o
(32

o

o
6]
o

Macro-F1 (%)
=
w

Accuracy (%)
[~
w

.
(=]

=

=)

Demos w/ gold

Demos w/ gold
Demos w/ random

Demos w/ random

35

0 4 8 16 32 S
k

4 8 16 32
k

Figure 5: Ablations on varying numbers of examples
in the demonstrations (k). Models that are the best un-

der 13B in each task category (Channel Metal CL and
Direct GPT-J, respectively) are used.
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Different templates

Minimal vs Manual: It worth nothing that using manual templates does not always

outperform using minimal templates

Increasing the words in prompt —-> not too much difference

65

.60 [ No demos Gold labels MW Random labels #%No demos + T %% Gold labels + T ##Random labels + T
X 55

> 50
© 45
=40
C 35
30
25"

7

o

?

GPT-] (Multi-choice)

MetalCL (Classification) GPT-] (Classifi

cation) MetalCL (Multi-choice)

Figure 6: Results with minimal templates and manual templates. ‘+T’ indicates that manual templates are used.
Channel and Direct used for classification and multi-choice, respectively.
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Role of Distribution

using out-of-distribution inputs instead of the inputs from the training
data significantly drops the performance

how the text is structured, organized, or presented

Gold labels Random labels O0oD
X1yl X1y2 X'1y2
X2 y2 X2y3 X'2y3
X3y3 X3yl X3yl
60 Classification
55
<50
. FLIM
235 Gold labels A
S 30 Random labels X
25 OOD + Random labels v v X X
Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT] No demonstrations X XXX
. Multi-choice
F: Format
;\355 L: Label space
;50 I Input distribution
;'cé zz M: Input-Label Mapping
-
% Direct MetalCL Channel MetalCL Direct GPT] Channel GPTJ

Figure 8: Impact of the distribution of the inputs. Evaluated in classification (top) and multi-choice (bottom). The

impact of the distribution of the input text can be measured by comparing

exception in Direct MetalCL (discussion in Section 5.1).

and . The gap is substantial, with an
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Role of Label Space

The model benefits from knowing the types of
answers

The set of all possible labels

Gold labels| [Random labels| | Random English words
X1yl X1ly2 X1lvy4
X2 y2 X2 y3 X2 y6
X3y3 X3yl X3y5
&b Classification
355
S50
I 45
0 FLI M
g:g Gold labels IS
‘z" 30 Random labels SIS
25 Random English words v X v X
Direct MetalCL Channel MetalCL Direct GPT-J Channel GPT-] No demonstrations XX XX
Multi-choice
60 F: Format
< % L: Label space
;50 I: Input distribution
§ ig M: Input-Label Mapping
=]
Q35
< 30
25

Direct MetalCL Channel MetalCL Direct GPT-] Channel GPT-J

Figure 9: Impact of the label space. Evaluated in classification (top) and multi-choice (bottom). The impact of
the label space can be measured by comparing ™ and . The gap is significant in the direct models but not in the
channel models (discussion in Section 5.2).
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Role of Formatting

keeping the format of the input-label pairs is key.

Format — The way the input and output are structured
Demonstrations with no label
Demonstrations with labels only

60 Classification
355
2_(/50 FLI M
k. 45 Gold labels SIS
© 40 Random labels STV
g 35 OOD + Random labels v v X X
=30 | i l | B Random labelsonly X v X X
" Direct MetalCL Channel MetaICL Direct GPT Channel GPTJ Rend U HAplist swordsg bl of 18
. . M No labels XX/ X
60 Multi-choice No demonstrations XX XX
f\g 55
<50 F: Format
%’45 ‘ | L: Label space
540 I: Input distribution
835 M: Input-Label Mapping
<30

25

Direct MetalCL Channel MetaICL Direct GPT-] Channel GPT]

Figure 10: Impact of the format, i.e., the use of the input-label pairs. Evaluated in classification (top) and multi-
choice (bottom). Variants of demonstrations without keeping the format (M and M) are overall not better than no
demonstrations (I). Keeping the format is especially significant when it is possible to achieve substantial gains
with the label space but without the inputs (" vs. M in Direct MetalCL), or with the input distribution but without
the labels (/" vs. M in Channel Metal CL and Channel GPT-J). More discussion in Section 5.3.
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Role Meta-Training

meta-training encourages the model to exclusively exploit
simpler aspects of the demonstrations and to ignore others

MetalCL = is trained with an in-context learning objective
focusing on learning how to use these demonstrations effectively without gradient updates

while training they had demonstrations as input and labels as output so It
was trained in this context learning setup

& Classification
355
S50 FLIM
. 45 Gold labels SIS
g 40 Random labels SIS X
835 OOD + Random labels v/ v X X
=30 M Random labelsonly X v X X
% Direct MetalCL Channel MetaICL Direct GPT] Channel GPTJ Random English words v/ X v/ X
X . B No labels XX/ KX
60 Multi-choice No demonstrations XX XX
555
S50 F: Format
245 L: Label space
540 I: Input distribution
835 M: Input-Label Mapping
< 30
25

Direct MetalCL Channel MetaICL Direct GPT-] Channel GPTJ

Figure 10: Impact of the format, i.e., the use of the input-label pairs. Evaluated in classification (top) and multi-
choice (bottom). Variants of demonstrations without keeping the format (M and M) are overall not better than no
demonstrations (). Keeping the format is especially significant when it is possible to achieve substantial gains
with the label space but without the inputs (" vs. M in Direct MetalCL), or with the input distribution but without
the labels (7 vs. M in Channel Metal CL and Channel GPT-J). More discussion in Section 5.3.
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Key Findings

“So, if the models don’t rely on the correct input-label mapping.
what actually helps the model perform better?

(1] Label space — The model benefits from knowing the types of answers (e.g.,

Positive/Negative/Neutral).
(2] Input distribution — Seeing real-world examples makes the model better at

generalizing.
(3) Format — The way the input and output are structured (e.g., question-answer

pairs) helps the model recognize patterns.”

So:

1. Ground truth demonstrations are not required (LVs do not need input-label mapping in
demonstrations, instead, it uses the specification of the input & label distribution separately)

2. Understanding task distribution and label space is key.
3. Future work should focus on improving model adaptability



#= [NIVERSITY
Al 7VIRGINIA

Implications & Future Work

1. Do LLMs actually ‘learn’ at test time ?

a model doesn’t necessarily ‘learn’ in the traditional sense—it doesn’t need correct examples to

perform well. Instead, it just needs to see the right format and input structure(recognizing familiar
patterns?)”

2. Risks(limitations) of using ICL for unseen tasks.
I if models aren’t really ‘understanding’ tasks, they might fail in unexpected ways.

May not generalize across all tasks and datasets, as some tasks are more sensitive to the use of
ground truth labels than others.

3. How does this impact instruction-following models?
A need to explore how models can improve their learning process beyond just mimicking patterns.”

A Why In-Context Learning Works

The previous two observations hence suggest that the performance gains from in-context learning vs
zero-shot learning is due to the specification of the input space and label space to the model, and not
because the model actually tries to learn from the supplied input-label pairs.

In fact, based on the results the model largely ignores the correspondence of the input-label pairs, and
instead uses its own priors during pretraining for the output.
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Many-Shot In-Context Learning

a method in NLP where a model learns(is trained to use) from a
large number of examples (or “shots”) of a task context

how scaling the number of shots affects ICL performance on a wide
variety of tasks ?
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e Explores hundreds or thousands of examples for
- Better task specification (Significant performance gains across tasks)

- Reducing reliance on fine-tuning.
- Overcome limited context windows (GPT-3 to Gemini 1.5 Pro with 1M tokens).

Context length total amount of text (in tokens) that the model can process at once.
* Challenges: Limited by the need for large numbers of high-quality human-generated examples.

— ) (]

Gemini 1.0 Pro GPT-4 Turbo Claude 3 Gemini 1.5
32K 128K 200K M

Context length of leading foundation models compare with Gimnil.5's 2 million token



How Many Shots is "many-shot"?

e |tis different For different tasks, for some like hundreds and some like thousands

e The graph compares best-performing shots (those where the model did the best) with maximum
shots (the largest number of examples tested).

e For most tasks, the model performed best when given a larger number of examples (shots), but
giving too many examples can sometimes reduce performance, especially when the model’s
context length limit is exceeded.

Many-Shot ICL: Context Length versus Number of Shots
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Does Many-Shot ICL Improve performance? Yes

Gemini 1.5 Pro: Evaluated across multiple tasks with hundreds to thousands of shots.

 Key takeaway: Many-shot ICL significantly outperforms few-shot ICL on complex reasoning tasks.
Optimal number of shots to achieve maximum performance is typically between 100,000 to 1

million tokens -->

100 Few-Shot ICL Many-Shot ICL 55 +18.2
X - +5.0 +10.9
CA
— 0
8"t +21.0
g2 60 +7.9
£ .- .
= 4150  +36.4 +9.2 ey » 3
£ (= 2 g 8 8 N B Bl B B G E
X~ = % . 5 @ 8 % s 2 s I 5 IS T8 &8 4 N
w20 58 B4 38 L& £ A& F8 5 o "
12 5 B + B -y 7 N s & + <
0 "M - g ” B
00N O & eah 0o oNY A 0o® §et
222 ?\30‘_‘\‘5,6(,5\ 0 ?25\ < “ao':\a . \\’\\ S c;«\ o g@\\ o ese“‘as‘(f’\‘eﬁ"‘ &e“‘ x\«‘ \(,?‘\
6\)((\ \\’oQ 580‘\)3 o 6\9\ o¢© \o\e @\P'S Q\a\ B (/0\ X : d\% (“a \\l

Figure 1 | Many-shot vs Few-Shot In-Context Learning (ICL) across several tasks. Many-shot ICL consistently outperforms
few-shot ICL, particularly on difficult non-natural language tasks. Optimal number of shots for many-shot ICL are shown
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Machine Learning on low-resource Languages

Particular task : Translation from English to low-resource languages (Bemba, Kurdish).

Findings: Many-shot ICL outperforms SOTA and Google Translate with up to 1,000 shots.
Performance Gains: 15.3% improvement on Bemba and 4.5% on Kurdish.

Many-shot ICL: Machine Translation

= 1 English - Bemba
oN 3 :
S| English -» Kurdish
- g
RelTy| [ gen i L7 ] Googe Temlaie (ST
L
<
(®) NLLB (SOTA)
+ 35
0
|_
30

20 21 22 23 24 25 26 27 28 29 210
Number of Shots (K)
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Replaces human-written rationales with Model-generated ones for problem-

solving _ _
* How to run the Many-shot ICL without human rationals?

* Human-written rationales or demonstrations can be expensive to collect, can we do without?

* Approach: Using Reinforces ICL we can generate model-generated rationales

Compile as many-shot

Select rationales that produce .
in-context examples

the correct final answer

( =)\
4 ) L Problem: ...
7, == Rationale: ...
Generate multiple rationales Problem: ...
for each training problem aasaie Rationale: ...
Problem: ...
%o i s Rationale: ...
. Y

Using model-generated rationales or only problems can reduce the dependence
of many-shot ICL on human-generated data.
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Another Approach:
U NSu perVised ICL Eliminates rationales, Using only domain-specific inputs.

Get rid of Rationales Entirely

* What if we just put the problem in the context window?
* Providing some problems, then asking for the solution of the problems

Preamble You will be provided Problems similar to the ones below: }
 Problem:
Long list of g:gbI:$: Many-shot to teach
unsolved problems § Problerm:.. the problem space

(Now, | am going to give you a series of demonstrations of math Problems and
Solutions. When you respond, respond only with the Solution of the final
Problem, thinking step by step.

Instruction

.

Short list of (Problem:
problems with Solution: ...

solutions Problem: ...

\.

Few-shot to teach
the format
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Reinforced and Unsupervised ICL Evaluation for
Reasoning tasks

*  Results: Both methods are effective for complex reasoning tasks, with Reinforced ICL being broadly
more effective and outperforms ICL with human-written solutions!

*  Math and GSM8k : two datasets commonly used in ML and NLP for evaluating models on
mathematical reasoning and problem-solving.

----- 4-shot InnerMono. MATH Prompt @ ICL (Ground-Truth) B Unsupervised ICL @@ Reinforced ICL

60.0% MATH500 GSM8K (Transfer using MATH prompts)
. 0

¥ 95.0%
£ 57.3% ° 90.0%
o 0
8 55.0% 85.0%
3
E 52.5% 80.0%
]
£ 50.0% 75.0%
47.5% 70.0% '
4 25 125 250 10 125 250 500

Number of Shots (K) Number of Shots (K)
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* They also perform number of experiments analyzing the ICL in the paper and here
is 2 of them

e Summary of results:
o Next-token prediction loss may not be good predictor of ICL performance

o Many-shot ICL can overcome pretraining biases, learn non-NLP prediction
tasks, perform well compared to fine-tuning
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Overcoming Pre-Training Bias

 Kossen et al, 2023 suggests ICL has difficultly unlearning pre-training biases
Figure 10: Sentiment analysis performance on flipped and abstract labels.
* Key point: Many-shot ICL can overcome pre-training biases, perform comparably to full fine-tuning

Sentiment Analysis (FP). Replacement Labels Sentiment Analysis (FP): Replacement Labels

100% 21.0
> el
] 9, o
5 80% 50.8
‘5 0
S 3
< 60% Abstract labels e Abstract labels
“%’ Default labels 50.6 Default labels
[ Flipped labels % Flipped labels

o]
53 55 57 59 ST © >3 55 57 9 ST

Number of Shots (K) Number of Shots (K)
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Many-Shot ICL for Non-NLP Tasks

* Learning high-dimensional functions (e.g., linear classification). This lets us do stress testing
general applicability to possible unseen tasks .

* Outperforms a GPT-2 sized model trained from scratch on 20x more data

Does the binary input sequence so far

Parity Sequence: 20 Digits
contain even or odd number of 1s8?

40.0%| —-—---m-=-m - =TT
Input: 10110001110000100111
Label: Odd Odd Even Odd Odd Odd Odd Even 30 0%
Odd Even Even Even Even Even Odd Odd Odd
Even Odd Even
20.0%

Gemini 1.5 Pro
10.0% —-—- Random Chance
---- GPT-2 Med (Scratch): 20x data

00% _________________________________________________
23 24 25 26 2-’ 28 29 210 211 212 213
Number of Shots (K)

believed to be a fundamental limitation of
self-attention (Chiang and Cholak, 2022)

Test Accuracy (%)
(Exact Seq. Match)
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Comparison to Fine-Tuning

Test chrF2++ (%)

40

20

Figure 13: Many-shot ICL vs. supervised fine-tuning for machine translation.

Finding: Many-shot ICL can perform comparably to fine-tuning with fewer computational resources.

Base Model Supervised FT Many-Shot ICL

English - Bemba

3

English —» Kurdish

@Q m ;S S 9

g o ¥ o @l s 0 ST
: :

250 997 250 997

Number of Examples

Number of Examples
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Why does the Many-Shot ICL work
well?

MATH: 50-shot Ordering Sensitivity Many_shot ICL is affected
o, o .
3 70.0% by ordering of examples.
2 65.0%
3' 83 o * o
m o (9]
= 60.0% o § ©
2 o & o © 4
& 55.0%| o ® & @ °
0 ® *
© 50.0% o
& * o
45.0%
O VY VLG TV  SVEC SV B e
\9 \" \9 A \" \" \"
N S S o Pqe‘“g

Figure 17 | Many-Shot Sensitivity To Example Ordering.
Each colored data point represents a different random order-
ing of 50 in-context examples provided to Gemini 1.5 Pro.
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40

30

Model Comparision

Gemini 1.5 Pro GPT-4-Turbo Claude-3-Opus Gemini 1.5 Flash
Translation: English - Bemba Translation: English = Kurdish
S
+ 40
+
~
L
<
v 35
4
]
@
20 21 22 ZJ 24 2.’3 2& 2( 28 29 21[} 20 21 22 23 24 2.‘) 26 2.’ 28 29 210

Number of Shots (K)

Different LLM's exhibit varying degree of many-shot ICL
capability

Number of Shots (K)
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Long Scaling Laws do not predict ICL
performance

Negative Log-Likelihood on Ground-Truth Solutions

55 GPQA MATH GSM8K

2

o 0.70 0.8

<13

E‘ 0.65 0.6

o 1.2

> 0.60

%1.1 0.4

2 5 10 25 50 125 750 A 10 25 50 425950 00 A 10 25 50 425195000
Number of Shots (K) Number of Shots (K) Number of Shots (K)

Reinforced ICL ICL (Ground-Truth) Unsupervised ICL

NLL not reliable proxy when attempting to predict ICL performance for
problem solving domains
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Conclusion and Future Directions

Summary: Many-shot ICL leads to performance gains across multiple tasks
and reduces reliance on fine-tuning.

* Limitations: Ordering sensitivity and challenges with large example sets.

e Future work: Explore many-shot ICL capabilities across a wider range of
models.
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Questions?
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