
Inference Time Scaling
Sharon Biju and Suraj Vaddi

- Inference Time: time it takes model to make predictions (perform inference)
- Larger models typically have longer inference times because they need more

computations for each prediction
- Performance scales with repeated sampling and inference compute
- Inference Compute can Outperform Model Scaling

Inference Time Scaling - Background

Paper 1
“Self-Consistency Improves Chain of Thought Reasoning in Language

Models”

Chain-of-Thought (CoT) Prompting - Background

- encourages language models to break down reasoning tasks into intermediate steps rather
than predicting a final answer directly

Greedy Decoding and Its Issues

- standard approach for generating model outputs, where the model selects the most
probable token at each step

- Issue 1- Lack of Diversity: Picks only one reasoning path, which may be incorrect
- Issue 2 - Local Optimality: It may not explore other valid paths that lead to a more accurate

answer

Alternative Decoding Strategy: Self-Consistency

- Relies on sampling multiple reasoning paths and selects most consistent final answer
instead of relying on a single path

- Entirely unsupervised: works with pre-trained language models
- Needs no additional human annotation
- Requires additional training, auxiliary models, or fine-tuning
- How it works:

1. Samples a diverse set of reasoning paths by sampling from the language model’s decoder
using stochastic decoding methods (paper mentions temperature and top-k sampling)

2. Selects most consistent answer by marginalizing sampled reasoning paths

Self-Consistency vs Greedy Decoding

Experimental Setup - Benchmarks

- Arithmetic reasoning: Math Word Problem Repository, AQUA-RAT
- Commonsense reasoning: CommonsenseQA, StrategyQA, AI2 Reasoning Challenge
- Symbolic reasoning: last letter concatenation and Coinflip

Experimental Setup - Models Used

- UL2 20B
- LaMBDA 137B
- GPT-3 175B
- PaLM 540B

Applied temperature sampling with T= 0.5 and
truncated top-k (k=40) tokens with highest
probability

Applied temperature sampling
with T= 0.7 and k=40

Applied temperature sampling with T=
0.7 and no top-k truncation

Experimental Goal: Compare Self-Consistency vs. CoT
with Greedy decoding

- Reported results averaged over 10 runs
- Sampled 40 outputs independently from the decoder in each run

Experiment Results - Arithmetic Reasoning Accuracy

Experiment Results - Commonsense and Symbolic Reasoning
Accuracy

Experiment Results - Commonsense and Symbolic Reasoning
Accuracy

- Coinflip Reasoning and Last Letter Concatenation
- OOD Test

Comparison to Sample-and-Rank

- compares self-consistency with sample-and-rank on GPT-3 code-davinci-001
- Sample-and-Rank: ranks sequences based on their log probability and selects what’s top ranked

Comparison to Beam Search

- Beam Search: decoding technique generating fixed number of tokens at each step
(called beams) and selects best beam based on its cumulative probability at each step

- Self-consistency is capable of adopting beam search to decode each reasoning path

Comparison to Ensemble-based Approaches

- 2 ensemble methods tested: Prompt Order Permutation and Multiple Sets of Prompts
- “Self-consistency acts more like a ‘self-ensemble’ on top of a single language model”

Additional Studies - Self-Consistency is Robust to Sampling
Strategies and Scaling

- Varied parameters like T in temperature sampling, k in top-k sampling, and p in nucleus
sampling to see how those affect performance of self-consistency

Additional Studies - Other Findings

- Self-consistency Improves Robustness to Imperfect Prompts
- Self-consistency Works for Non-Natural Language Reasoning Paths and Zero-shot CoT

CoT with Greedy Being Outperformed By Self-Consistency

Future Work

- Can we design adaptive test-time compute methods?
- How do we reduce compute costs while keeping high accuracy?

Paper 2
“Large Language Monkeys: Scaling Inference Compute with Repeated

Sampling”

Research Goals

Scaling during training is heavily researched, but scaling during inference has not had the same
investment.

- Coverage: As the number of samples increases, what fraction of problems can we solve
using any sample that was generated?

- Precision: How often can we identify correct samples from our collection of generations?

Coverage and Precision Implementation

Task Datasets

1. GSM8K: grade-school level math word problems, using a random subset of 128 problems from test set.
2. MATH: harder math word problems that are generally harder than those from GSM8K , using 128

random problems from test set.
3. MiniF2F-MATH: mathematics problems formalized into proof checking languages, using Lean4 as our

language, and evaluate on the 130 test set problems that are formalized from the MATH dataset.
4. CodeContests: competitive programming problems. Each problem has a text description, along with a set

of input-output test cases (hidden from the model) that can be used to verify the correctness of a candidate
solution. We enforce that models write their solutions using Python3.

5. SWE-bench Lite: real-world Github issues, where each problem consists of a description and a snapshot
of a code repository. To solve a problem, models must edit files in the codebase (in the Lite subset of
SWE-bench that we use, only a single file needs to be changed). Candidate solutions can be automatically
checked using the repository’s suite of unit tests.

Task Datasets (1. GSM8K)

Grade-school level math word problems, using a random subset of 128 problems from test set.

https://paperswithcode.com/dataset/gsm8k

https://paperswithcode.com/dataset/gsm8k

Task Datasets (2. MATH)

Harder math word problems that are generally harder than those from GSM8K , using 128
random problems from test set.

https://paperswithcode.com/dataset/math

https://paperswithcode.com/dataset/math

Task Datasets (3. MiniF2F-MATH)

Mathematics problems formalized into proof checking languages, using Lean4 as our language,
and evaluate on the 130 test set problems that are formalized from the MATH dataset.

https://paperswithcode.com/dataset/minif2f

https://paperswithcode.com/dataset/minif2f

Task Datasets (4. CodeContests)

Competitive programming problems. Each problem has a text description, along with a set of
input-output test cases (hidden from the model) that can be used to verify the correctness of a
candidate solution. We enforce that models write their solutions using Python3.

https://paperswithcode.com/dataset/codecontests

https://paperswithcode.com/dataset/codecontests

Task Datasets (5. SWE-bench Lite)

Real-world Github issues, where each problem consists of a description and a snapshot of a code
repository. To solve a problem, models must edit files in the codebase (in the Lite subset of
SWE-bench that we use, only a single file needs to be changed). Candidate solutions can be
automatically checked using the repository’s suite of unit tests.

https://www.swebench.com/index.html#test

https://www.swebench.com/index.html#test

Repeated Sampling

Broader Set of Models

1. Llama 3: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B-Instruct.
2. Gemma: Gemma-2B, Gemma-7B [52].
3. Pythia: Pythia-70M through Pythia-12B (eight models in total) [9].

Repeated Sampling across Model Sizes, Families, and Post-Training

FLOPs as a Cost Metric

Repeated Sampling to Balance Performance and Cost

Coverage versus Sample Budget

1. The relationship between coverage and the number of samples can often be modelled with
an exponentiated power law.

2. For a given task, the coverage curves of different models from the same family resemble
S-curves with similar slopes but distinct horizontal offsets.

Scaling Laws and Coverage Curves

GSM8K and MATH lack automatic verification tools

1. Majority Vote: We pick the most common final answer
2. Reward Model + Best-of-N: We use a reward model to score each solution, and pick the

answer from the highest-scoring sample.
3. Reward Model + Majority Vote: We calculate a majority vote where each sample is

weighted by its reward model score.

Scalability of Verification Methods

“However, tools like unit tests take a black-box approach to verifying a piece of code and are not
as comprehensive as methods like proof checkers. These imperfections in the verification process
can lead to false positives and/or false negatives that are important to consider.”

when applying repeated sampling

1. Flaky Tests in SWE-bench Lite
2. False Negatives in CodeContests

Software Task Verification

1. Solution Diversity: relying on a positive sampling temperature as the sole mechanism for
creating diversity among samples; combining this token-level sampling with other,
higher-level approaches may be able to further increase diversity (AlphaCode metadata
tags).

2. Multi-Turn Interactions: Providing models with execution feedback from these tools
should improve solution quality.

3. Learning From Previous Attempts: Currently, our experiments fully isolate attempts from
each other. Access to existing samples, particularly if verification tools can provide feedback
on them, may be helpful when generating future attempts.

Future and Limitations

Paper 3
“Scaling LLM Test-Time Compute Optimally can be More Effective

than Scaling Model Parameters”

Can we enable language models to most effectively make
use of additional computation at test time so as to

improve the accuracy of their response?

Two Key Approaches to Scaling Test-Time Compute

1. Searching Against a Verifier
(Process-Based Reward Model - PRM):
reward model that evaluates and
reinforces intermediate reasoning steps
rather than just final outputs

2. Updating Model’s Distribution Over
Response Adaptively

Compute-Optimal Strategy Background

Test-Time Compute Optimal Scaling Strategy: A method for adaptively allocating test-time computation resources to maximize
model performance on a given prompt, selecting the most effective strategy based on prompt difficulty .

Model-Predicted Difficulty: A method for estimating the difficulty of a given prompt by using a learned verifier’s predicted
correctness scores across multiple model-generated responses, rather than relying on ground-truth correctness checks .

Oracle Difficulty: A difficulty estimation approach that categorizes questions based on a model’s actual pass rate using ground-truth
correctness checks, serving as a more precise but less practical method for determining test-time compute allocation

Compute-Optimal Strategy

- Adapting Test-Time Compute per Prompt
- Dynamically allocates test-time compute

depending on difficulty
- Key finding: Using this adaptive strategy, the

model achieves the same performance as a
best-of-N approach while using 4× less
compute.

Best-of-N: sampling N outputs in parallel
from a base LLM and choosing whichever
scores highest from a verifier

Experimental Setup

1. Datasets: focus on MATH benchmark
2. Models: Conduct analysis on PaLM-2S*
3. Evaluation: Compare Test-time Compute Scaling vs. Pretraining Scaling

Experimental Results

1. Scaling Test-Time Compute Can Outperform a 14× Larger Model
2. Different Strategies Work Better for Different Difficulty Levels
3. Search-Based Approaches Can Improve Answer Quality
4. Combining Both Methods is Most Effective

Implications

1. Smaller Models and More test-time compute can cause a cheaper deployment without
sacrificing the model performance

2. Adaptive test time compute has a more efficient resource use
3. LLMs could iteratively refine their outputs and self-improve with minimal reliance on

human supervision

Scaling Search-Based Methods

1. Process-based reward models (PRMs) evaluate solutions step-by-step
2. 3 search methods were compared

- Best-of-N search

- Beam Search

- Lookahead Search: An enhanced beam search that simulates up to k future steps to
improve value estimation before selecting the best current step

3. Finding: beam search works well at low compute but over optimization hurts
performance at a high compute

Optimizing PRM Via Search Methods

Scaling Iterative Revisions

1. Instead of searching for the best answer, the model refines its own response
2. Finding: Sequential revisions outperform parallel sampling in most cases

Tradeoff between Parallel and Sequential Compute

1. Easy Problems: Sequential revisions are
better (small fixes improve accuracy)

2. Hard Problems: Parallel sampling helps
(exploring different approaches)

FLOPs Analysis

- Matching FLOPs for a 14x Smaller Training Model Requires Significant Pre Training Cost

Model Size Number of Pre-training Data
Tokens

Number of Tokens Generated at
Inference Time

Pretraining FLOPs vs Test-Time FLOPs

- Pretraining FLOPs: compute used to train a model
- Test-Time FLOPs: compute used during inference
- If pretraining FLOPs are increased ->get a larger model with potentially better raw performance
- If inference FLOPs increased -> model can refine its answers via self-revisions, search, or

verification to improve accuracy

FLOPs Tradeoff Between Pre Training and Test-Time Compute

3 Cases:

- R>>1 (More Inference Tokens) →Pre Training is better
- R ≈ 1 (Balanced inference and pretraining) →Test-time compute is effective
- R <<1 (Few Inference tokens) → Test-time compute is best

Limitations and Future Work

- Hard problems still need pretraining
- Better difficulty estimation necessary for adaptive compute
- Combining test-time compute with pre training strategies may yield better results

Conclusions

Questions?

