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- Inference Time: time it takes model to make predictions (perform inference)
- Larger models typically have longer inference times because they need more 

computations for each prediction
- Performance scales with repeated sampling and inference compute
- Inference Compute can Outperform Model Scaling

Inference Time Scaling - Background



Paper 1
“Self-Consistency Improves Chain of Thought Reasoning in Language 

Models”



Chain-of-Thought (CoT) Prompting - Background

- encourages language models to break down reasoning tasks into intermediate steps rather 
than predicting a final answer directly



Greedy Decoding and Its Issues

- standard approach for generating model outputs, where the model selects the most 
probable token at each step

- Issue 1- Lack of Diversity: Picks only one reasoning path, which may be incorrect
- Issue 2 - Local Optimality: It may not explore other valid paths that lead to a more accurate 

answer



Alternative Decoding Strategy: Self-Consistency

- Relies on sampling multiple reasoning paths and selects most consistent final answer 
instead of relying on a single path

- Entirely unsupervised: works with pre-trained language models
- Needs no additional human annotation
- Requires additional training, auxiliary models, or fine-tuning
- How it works:

1. Samples a diverse set of reasoning paths by sampling from the language model’s decoder 
using stochastic decoding methods (paper mentions temperature and top-k sampling)

2. Selects most consistent answer by marginalizing sampled reasoning paths 





Self-Consistency vs Greedy Decoding



Experimental Setup - Benchmarks

- Arithmetic reasoning: Math Word Problem Repository, AQUA-RAT
- Commonsense reasoning: CommonsenseQA, StrategyQA, AI2 Reasoning Challenge
- Symbolic reasoning: last letter concatenation and Coinflip



Experimental Setup - Models Used

- UL2 20B
- LaMBDA 137B
- GPT-3 175B
- PaLM 540B

Applied temperature sampling with T= 0.5 and 
truncated top-k (k=40) tokens with highest 
probability

Applied temperature sampling 
with T= 0.7 and k=40

Applied temperature sampling with T= 
0.7 and no top-k truncation



Experimental Goal: Compare Self-Consistency vs. CoT 
with Greedy decoding

- Reported results averaged over 10 runs
- Sampled 40 outputs independently from the decoder in each run



Experiment Results - Arithmetic Reasoning Accuracy



Experiment Results - Commonsense and Symbolic Reasoning 
Accuracy



Experiment Results - Commonsense and Symbolic Reasoning 
Accuracy

- Coinflip Reasoning and Last Letter Concatenation
- OOD Test



Comparison to Sample-and-Rank

- compares self-consistency with sample-and-rank on GPT-3 code-davinci-001
- Sample-and-Rank: ranks sequences based on their log probability and selects what’s top ranked



Comparison to Beam Search

- Beam Search: decoding technique generating fixed number of tokens at each step 
(called beams) and selects best beam based on its cumulative probability at each step

- Self-consistency is capable of adopting beam search to decode each reasoning path



Comparison to Ensemble-based Approaches

- 2 ensemble methods tested: Prompt Order Permutation and Multiple Sets of Prompts
- “Self-consistency acts more like a ‘self-ensemble’ on top of a single language model”



Additional Studies - Self-Consistency is Robust to Sampling 
Strategies and Scaling

- Varied parameters like T in temperature sampling, k in top-k sampling, and p in nucleus 
sampling to see how those affect performance of self-consistency



Additional Studies - Other Findings

- Self-consistency Improves Robustness to Imperfect Prompts
- Self-consistency Works for Non-Natural Language Reasoning Paths and Zero-shot CoT



CoT with Greedy Being Outperformed By Self-Consistency



Future Work

- Can we design adaptive test-time compute methods?
- How do we reduce compute costs while keeping high accuracy?



Paper 2
“Large Language Monkeys: Scaling Inference Compute with Repeated 

Sampling”



Research Goals

Scaling during training is heavily researched, but scaling during inference has not had the same 
investment.

- Coverage: As the number of samples increases, what fraction of problems can we solve 
using any sample that was generated?

- Precision: How often can we identify correct samples from our collection of generations?



Coverage and Precision Implementation



Task Datasets

1. GSM8K: grade-school level math word problems, using a random subset of 128 problems from test set.
2. MATH: harder math word problems that are generally harder than those from GSM8K , using 128 

random problems from test set.
3. MiniF2F-MATH: mathematics problems formalized into proof checking languages, using Lean4 as our 

language, and evaluate on the 130 test set problems that are formalized from the MATH dataset.
4. CodeContests: competitive programming problems. Each problem has a text description, along with a set 

of input-output test cases (hidden from the model) that can be used to verify the correctness of a candidate 
solution. We enforce that models write their solutions using Python3.

5. SWE-bench Lite: real-world Github issues, where each problem consists of a description and a snapshot 
of a code repository. To solve a problem, models must edit files in the codebase (in the Lite subset of 
SWE-bench that we use, only a single file needs to be changed). Candidate solutions can be automatically 
checked using the repository’s suite of unit tests.



Task Datasets (1. GSM8K)

Grade-school level math word problems, using a random subset of 128 problems from test set.

https://paperswithcode.com/dataset/gsm8k

https://paperswithcode.com/dataset/gsm8k


Task Datasets (2. MATH)

Harder math word problems that are generally harder than those from GSM8K , using 128 
random problems from test set.

https://paperswithcode.com/dataset/math

https://paperswithcode.com/dataset/math


Task Datasets (3. MiniF2F-MATH)

Mathematics problems formalized into proof checking languages, using Lean4 as our language, 
and evaluate on the 130 test set problems that are formalized from the MATH dataset.

https://paperswithcode.com/dataset/minif2f

https://paperswithcode.com/dataset/minif2f


Task Datasets (4. CodeContests)

Competitive programming problems. Each problem has a text description, along with a set of 
input-output test cases (hidden from the model) that can be used to verify the correctness of a 
candidate solution. We enforce that models write their solutions using Python3.

https://paperswithcode.com/dataset/codecontests

https://paperswithcode.com/dataset/codecontests


Task Datasets (5. SWE-bench Lite)

Real-world Github issues, where each problem consists of a description and a snapshot of a code 
repository. To solve a problem, models must edit files in the codebase (in the Lite subset of 
SWE-bench that we use, only a single file needs to be changed). Candidate solutions can be 
automatically checked using the repository’s suite of unit tests.

https://www.swebench.com/index.html#test

https://www.swebench.com/index.html#test


Repeated Sampling



Broader Set of Models

1. Llama 3: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B-Instruct.
2. Gemma: Gemma-2B, Gemma-7B [52].
3. Pythia: Pythia-70M through Pythia-12B (eight models in total) [9].



Repeated Sampling across Model Sizes, Families, and Post-Training



FLOPs as a Cost Metric



Repeated Sampling to Balance Performance and Cost





Coverage versus Sample Budget

1. The relationship between coverage and the number of samples can often be modelled with 
an exponentiated power law.

2. For a given task, the coverage curves of different models from the same family resemble 
S-curves with similar slopes but distinct horizontal offsets.





Scaling Laws and Coverage Curves



GSM8K and MATH lack automatic verification tools

1. Majority Vote: We pick the most common final answer
2. Reward Model + Best-of-N: We use a reward model to score each solution, and pick the 

answer from the highest-scoring sample.
3. Reward Model + Majority Vote: We calculate a majority vote where each sample is 

weighted by its reward model score.

Scalability of Verification Methods





“However, tools like unit tests take a black-box approach to verifying a piece of code and are not 
as comprehensive as methods like proof checkers. These imperfections in the verification process 
can lead to false positives and/or false negatives that are important to consider.”

when applying repeated sampling

1. Flaky Tests in SWE-bench Lite
2. False Negatives in CodeContests

Software Task Verification





1. Solution Diversity: relying on a positive sampling temperature as the sole mechanism for 
creating diversity among samples; combining this token-level sampling with other, 
higher-level approaches may be able to further increase diversity (AlphaCode metadata 
tags).

2. Multi-Turn Interactions: Providing models with execution feedback from these tools 
should improve solution quality. 

3. Learning From Previous Attempts: Currently, our experiments fully isolate attempts from 
each other. Access to existing samples, particularly if verification tools can provide feedback 
on them, may be helpful when generating future attempts.

Future and Limitations



Paper 3
“Scaling LLM Test-Time Compute Optimally can be More Effective 

than Scaling Model Parameters”



Can we enable language models to most effectively make 
use of additional computation at test time so as to 

improve the accuracy of their response?



Two Key Approaches to Scaling Test-Time Compute

1.  Searching Against a Verifier 
(Process-Based Reward Model - PRM): 
reward model that evaluates and 
reinforces intermediate reasoning steps 
rather than just final outputs

2. Updating Model’s Distribution Over 
Response Adaptively



Compute-Optimal Strategy Background

Test-Time Compute Optimal Scaling Strategy: A method for adaptively allocating test-time computation resources to maximize 
model performance on a given prompt, selecting the most effective strategy based on prompt difficulty .

Model-Predicted Difficulty: A method for estimating the difficulty of a given prompt by using a learned verifier’s predicted 
correctness scores across multiple model-generated responses, rather than relying on ground-truth correctness checks .

Oracle Difficulty: A difficulty estimation approach that categorizes questions based on a model’s actual pass rate using ground-truth 
correctness checks, serving as a more precise but less practical method for determining test-time compute allocation 



Compute-Optimal Strategy

- Adapting Test-Time Compute per Prompt
- Dynamically allocates test-time compute 

depending on difficulty
- Key finding: Using this adaptive strategy, the 

model achieves the same performance as a 
best-of-N approach while using 4× less 
compute.

Best-of-N: sampling N outputs in parallel  
from a base LLM and choosing whichever 
scores highest from a verifier



Experimental Setup

1. Datasets: focus on MATH benchmark
2. Models: Conduct analysis on PaLM-2S*
3. Evaluation: Compare Test-time Compute Scaling vs. Pretraining Scaling



Experimental Results

1.  Scaling Test-Time Compute Can Outperform a 14× Larger Model
2.  Different Strategies Work Better for Different Difficulty Levels
3. Search-Based Approaches Can Improve Answer Quality
4. Combining Both Methods is Most Effective



Implications

1.  Smaller Models and More test-time compute can cause a cheaper deployment without 
sacrificing the model performance

2. Adaptive test time compute has a more efficient resource use
3. LLMs could iteratively refine their outputs and self-improve with minimal reliance on 

human supervision



Scaling Search-Based Methods

1. Process-based reward models (PRMs) evaluate solutions step-by-step
2. 3 search methods were compared

- Best-of-N search

- Beam Search

- Lookahead Search: An enhanced beam search that simulates up to k future steps to 
improve value estimation before selecting the best current step

3. Finding: beam search works well at low compute but over optimization hurts 
performance at a high compute



Optimizing PRM Via Search Methods





Scaling Iterative Revisions

1. Instead of searching for the best answer, the model refines its own response
2. Finding: Sequential revisions outperform parallel sampling in most cases



Tradeoff between Parallel and Sequential Compute

1. Easy Problems: Sequential revisions are 
better (small fixes improve accuracy)

2. Hard Problems: Parallel sampling helps 
(exploring different approaches)



FLOPs Analysis

- Matching FLOPs for a 14x Smaller Training Model Requires Significant Pre Training Cost

Model Size Number of Pre-training Data 
Tokens

Number of Tokens Generated at 
Inference Time



Pretraining FLOPs vs Test-Time FLOPs

- Pretraining FLOPs: compute used to train a model
- Test-Time FLOPs: compute used during inference
- If pretraining FLOPs are increased ->get a larger model with potentially better raw performance
- If inference FLOPs increased -> model can refine its answers via self-revisions, search, or 

verification to improve accuracy



FLOPs Tradeoff Between Pre Training and Test-Time Compute

3 Cases:

- R>>1 (More Inference Tokens) →Pre Training is better
- R ≈ 1 (Balanced inference and pretraining) →Test-time compute is effective
- R <<1 (Few Inference tokens) → Test-time compute is best





Limitations and Future Work

- Hard problems still need pretraining
- Better difficulty estimation necessary for adaptive compute
- Combining test-time compute with pre training strategies may yield better results



Conclusions



Questions?


