Inference Time Scaling
Sharon Biju and Suraj Vaddi

Inference Time Scaling - Background

- Inference Time: time it takes model to make predictions (perform inference)

- Larger models typically have longer inference times because they need more
computations for each prediction

- Performance scales with repeated sampling and inference compute

- Inference Compute can Outperform Model Scaling

Paper 1

“Self-Consistency Improves Chain of Thought Reasoning in Language
Models”

Chain-of-Thought (CoT) Prompting - Background

encourages language models to break down reasoning tasks into intermediate steps rather

than predicting a final answer directly

Greedy Decoding and Its Issues

- standard approach for generating model outputs, where the model selects the most

probable token at each step
- Issue 1- Lack of Diversity: Picks only one reasoning path, which may be incorrect

- Issue 2 - Local Optimality: It may not explore other valid paths that lead to a more accurate

anNsSwer

Alternative Decoding Strategy: Self-Consistency

- Relies on sampling multiple reasoning paths and selects most consistent final answer
instead of relying on a single path

- Entirely unsupervised: works with pre-trained language models

- Needs no additional human annotation

- Requires additional training, auxiliary models, or fine-tuning

- How it works:

1. Samples a diverse set of reasoning paths by sampling from the language model’s decoder

using stochastic decoding methods (paper mentions temperature and top-k sampling)

2. Selects most consistent answer by marginalizing sarnpled reasoning paths

Greedy decode

This means she uses 3 + 4 = 7 eggs every day.

Chain-of-thought ‘ Language She sells the remainder for $2 per egg, so in
prompting Frompt T model total she sells 7 * $2 = $14 per day. The answer is $14. }

The answer is $14.

Self_consistency Sarnp\le a dia\ferge Sei Of }@F\«’q I’gth!le C’ut reas)ﬂlﬂ{j p
reac‘oning Qa'} hc ; ” LO agﬂ egute I‘lﬂml answers
7’
I

ﬂ): If there are 3 cars in the parking \ (She has 16 - 3 - 4 9 eggs
lot and 2 more cars arrive, how many left. So she makes $2*9 = | The answer is $18.
cars are in the parking lot? \$18 per day. [)
A: There are 3 cars in the parking lot 2 ~
already. 2 more arrive. Now there are This means she she sells the :

3 +2=5cars. The answer is 5. remainder for $2* (16 - 4 - 3) The answerls $26.
= $26 per day.

Q Janet’s ducks lay 16 eggs per day. Language

She eats three for breakfast every 5

morning and bakes muffins for her model /She eats 3 for breakfast, so |
friends every day with four. She sells she has 16 - 3 = 13 left. Then |

the remainder for $2 per egg. How she bakes muffins, so she | The answeris $18. |
much does she make every day? has 13 - 4 = 9 eggs left. So

/ she has9eggs * $2 = $18. |)

Figure 1: The self-consistency method contains three steps: (1) prompt a language model using
chain-of-thought (CoT) prompting; (2) replace the “greedy decode” in CoT prompting by sampling
from the language model’s decoder to generate a diverse set of reasoning paths; and (3) marginalize
out the reasoning paths and aggregate by choosing the most consistent answer in the final answer set.

Self-Consistency vs Greedy Decoding

Method How It Works

Greedy Picks the highest probability token at

Decoding each step

Self- Samples multiple reasoning paths and

Consistency picks the most consistent answer

Pros

Fast, simple

More robust,

reduces errors

Cons

Can get stuck in

local optima

Requires more

compute

Experimental Setup - Benchmarks

- Arithmetic reasoning: Math Word Problem Repository, AQUA-R AT
- Commonsense reasoning: CommonsenseQA, StrategyQA, AI2 Reasoning Challenge
- Symbolic reasoning: last letter concatenation and Coinflip

Table 14: Few-shot exemplars for AQUA-RAT.
Q: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of the
numbers is? Answer Choices: (a) 50 (b) 45 (c) 65 (d) 78 (e) 64
A: If 10 is added to each number, then the mean of the numbers also increases by 10. So the new mean
would be 50. The answer is (a).
Table 15: Few-shot exemplars for ARC easy/challenge.

Q: George wants to warm his hands quickly by rubbing them. Which skin surface will produce the most
heat? (a) dry palms. (b) wet palms. (c) palms covered with oil. (d) palms covered with lotion.

A: Dry surfaces will more likely cause more friction via rubbing than other smoother surfaces, hence dry
palms will produce the most heat. The answer is (a).

Table 16: Few-shot exemplars for HotpotQA (closed-book setting).
Q: Which magazine was started first Arthur’s Magazine or First for Women?

A: Arthur’s Magazine started in 1844. First for Women started in 1989. So Arthur’s Magazine was started first.
The answer is Arthur’s Magazine.

Experimental Setup - Models Used

- UL220B

- LaMBDA 137B
- GPT-3175B

- PaLM 540B

Applied temperature sampling with T=

0.7 and no top—k truncation

Applied temperature sampling
with T= 0.7 and k=40

Experimental Goal: Compare Self-Consistency vs. CoT
with Greedy decoding

Reported results averaged over 10 runs

Sampled 40 outputs independently from the decoder in each run

Experiment Results - Arithmetic Reasoning Accuracy

Method AddSub MultiArith ASDiv AQuA SVAMP GSMSK
Previous SoTA 94.9¢ 60.5% 753" 37.9¢ 57.4% 35¢ / 559

CoT-prompting 18.2 10.7 16.9 23.6 12.6 4.1
Self-consistency 24.8 (+6.6) 15.0 +4.3) 21.5 (+4.6) 26.9 (+3.3) 19.4 (+6.8) 7.3 (+3.2)

CoT-prompting 52.9 51.8 49.0 17.7 38.9 17.1
Self-consistency 63.5 (+10.6) 75.7 (#239) 58.2 (+9.2) 26.8 (+9.1) 53.3 (+14.4) 27.7 (+10.6)

CoT-prompting 91.9 94.7 74.0 35.8 79.0 56.5
Self-consistency 93.7 (+1.8) 99.3 (+4.6) 81.9 (+7.9) 48.3 (+12.5) 86.6 (+7.6) 74.4 (+17.9)

GPT-3 CoT-prompting 57.2 595 521 18.9 39.8 14.6
Code-davinci-001 Self-consistency 67.8 (+10.6) 82.7(#232) 61.9 (+9.2) 25.6 (+6.7) 54.5 (+14.7) 23.4 (+8.8)

GPT-3 CoT-prompting 89.4 96.2 80.1 39.8 75.8 60.1
Code-davinci-002 Self-consistency 91.6 (+2.2) 100.0 (+3.8) 87.8 (+7.6) 52.0 (+12.2) 86.8 (+11.0) 78.0 (+17.9)

UL2-20B

LaMDA-137B

PalLM-540B

Experiment Results - Commonsense and Symbolic Reasoning
Accuracy

Method CSQA StrategyQA ARC-e ARC-c Letter (4) Coinflip (4)
Previous SoTA 91.2“ 73.9° 86.4° 75.0¢ N/A N/A

UL2-20B CoT-prompting 514 533 61.6 429 0.0 504

Self-consistency 55.7 (+4.3) 54.9 (+1.6) 69.8 (+82) 49.5 (+6.8) 0.0 (+0.0) 50.5 (+0.1)

CoT-prompting 57.9 65.4 13 53:1 8.2 72.4
Self-consistency 63.1 (+52) 67.8 (+24) 79.3 (+4.0) 59.8 (+4.7) 8.2 (+0.0) 73.5 (+1.1)

CoT-prompting 79.0 D3 95.3 85.2 65.8 88.2
Self-consistency 80.7 (+1.7) 81.6 (+6.3) 96.4 (+1.1) 88.7 (+3.5) 70.8 (+5.0) 91.2 (+3.0)

GPT-3 CoT-prompting 46.6 56.7 63.1 43.1 7.8 71.4
Code-davinci-001 Self-consistency 54.9 #83) 61.7 (+5.00 72.1 +9.0) 53.7 (#10.6) 10.0 (+2.2) 75.9 (+4.5)

GPT-3 CoT-prompting 79.0 73.4 94.0 83.6 70.4 99.0
Code-davinci-002 Self-consistency 81.5 (+2.5) 79.8 (+6.4) 96.0 (+2.0) 87.5 (+3.9) 73.4 (+3.0) 99.5 (+0.5)

LaMDA-137B

PalLM-540B

Experiment Results - Commonsense and Symbolic Reasoning
Accuracy

MultiArith Commonsense QA ARC (Challenge)

Greedy Decode (Single-path)
—f— Self Consistency (Multi-path)

33
0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
#Sampled Reasoning Paths #Sampled Reasoning Paths #Sampled Reasoning Paths #Sampled Reasoning Paths

Figure 2: Self-consistency (blue) significantly improves accuracy over CoT-prompting with greedy
decoding (orange) across arithmetic and commonsense reasoning tasks, over LaMDA-137B. Sampling
a higher number of diverse reasoning paths consistently improves reasoning accuracy.

- Coinﬂip Reasoning and Last Letter Concatenation

- OO0OD Test

Comparison to Sample-and-Rank

24 MultiArith ARC (Challenge)

gz S
>
318 = 45

®© 40

5 16 5 / —#— Self Consistency (Multi-path)

014 /‘ / 935 I Sample & Rank (Multi-path)
<< 12 % o < 39 Greedy Decode (Single-path)
0O 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0O 5 10 15 20 25 30 35 40

#Sampled Reasoning Paths #Sampled Reasoning Paths #Sampled Reasoning Paths

Figure 3: Self-consistency significantly outperforms sample-and-rank with the same # of samples.

- compares self-consistency with sample-and-rank on GPT-3 code-davinci-001
- Sample-and-Rank: ranks sequences based on their log probability and selects what’s top ranked

Comparison to Beam Search

Beam size / Self-consistency paths 1 5 10 20 40

Beam search decoding (top beam) 23.6 19.3 16.1 15.0 10.2
AQuA Self-consistency using beam search 23.6 19.8 £03 21.2 £07 246 £04 242 £05
Self-consistency using sampling 19.7 £25 24.9%26 253 £18 26.7 £ 1.0 26.9 £ 0.5

Beam search decoding (top beam) 10.7 12.0 11.3 11.0 10.5
MultiArith Self-consistency using beam search 10.7 11.8 £00 114 +01 123 +0.1 10.8 £0.1
Self-consistency using sampling 95+12 113412 123 +08 13.7 £ 09 14.7 03

Table 6: Compare self-consistency with beam search decoding on the UL2-20B model.

- Beam Search: decoding technique generating fixed number of tokens at each step
(called beams) and selects best beam based on its cumulative probability at each step

- Self-consistency is capable of adopting beam search to decode each reasoning path

Comparison to Ensemble-based Approaches

GSM8K MultiArith SVAMP ARC-e ARC-c

CoT (Wei et al., 2022) 17.1 51.8 38.9 753 55.1

Ensemble (3 sets of prompts) 186 +05 57.1+07 421+06 76.6+01 57.0+02
Ensemble (40 prompt permutations) 192 +01 609 £02 427 +01 769 +01 57.0=+0.1
Self-Consistency (40 sampled paths) 27.7 £02 75.7 +£03 533 +02 793+03 598102

Table 7: Self-consistency outperforms prompt-order and multi-prompt ensembles on LaMDA-137B.

- 2 ensemble methods tested: Prompt Order Permutation and Multiple Sets of Prompts

- “Self-consistency acts more like a ‘self-ensemble’ on top of a single language model”

Additional Studies - Self-Consistency is Robust to Sampling
Strategies and Scaling

T=0.7, k=40 —~ 25 —#— Self Consistency
T=0.5, k=40 X Greedy Decode
T=0.3, k=40 =20
T=0.7, k=20 § 15

T=0.7, no top k 310

p=0.95 g)
p=0.9

0 5 10 15 20 25 30 35 40 Greedy Decode 1 2 5 10 20 50 100200
#Sampled Reasoning Paths Model size (#param in billions)

Figure 4: GSMS8K accuracy. (Left) Self-consistency is robust to various sampling strategies and
parameters. (Right) Self-consistency improves performance across language model scales.

- Varied parameters like T in temperature sampling, k in top-k sampling, and p in nucleus

sampling to see how those affect performance of self-consistency

Additional Studies - Other Findings

- Self-consistency Improves Robustness to Imperfect Prompts

- Self-consistency Works for Non-Natural Language Reasoning Paths and Zero-shot CoT

Question

[MultiArith] Sam had 10 socks.
If he threw away 3 old ones
that didn’t fit and bought 36 new
ones, how many socks would he
have?

[SVAMP] In a school there are
697 girls and the rest are boys.
If there are 228 more girls than
boys. How many boys are there
in that school?

[AQuA] There are 10 oranges in
a basket. Find the no. of ways in
which 2 oranges are chosen from
the basket? (a) 45 (b) 90 (c) 120
(d) 150 (e) 180

[CommonsenseQA] The man
laid on the soft moss and looked
up at the trees, where was the
man? (a) niagra falls (b) forest
(c) waterfall (d) ground (e) tree

[ARC] Which of these will most
likely harm a habitat? (a) plant-
ing trees. (b) water pollution. (c)
rainfall. (d) sunlight.

[ARC-challenge] Which pro-
cess in the carbon cycle takes the
longest to complete? (a) emis-
sion of waste. (b) respiration in
animals. (c) photosynthesis in
plants. (d) formation of fossil fu-
els.

Greedy Decode

Sam had 10 socks. He threw
away 3 old ones that didn’t fit.
He bought 36 new ones. That
means he has 10 + 36 - 3 =41
socks. The answer is 41.

There are 697 girls and the rest
are boys. That means there are
697 + 22 925 girls. The
rest are boys. So the number of

s 925 - 697 = 228. The

There are 10 oranges in a ba:
ket. So there are 10 ways
in which 2 oranges are chosen
from the basket.

The answer must be something
that is soft and mossy. Of the
above choices, only ground is
soft and mossy. So the answer
is (d).

Planting trees will not harm a
habitat. So the answer is (a).

The process of phot
in plants takes the long
complete. So the answer is (c).

+
W
+
+

Sampled Path 1

Sam had 10 socks. He
threw away 3 old ones. So
now he has 7 left. Then he
bought 36 new ones. So
now he has 7 + 36 = 43
socks. The answer is 43

The number of boys is the
difference between 697
and 228. This is 697 - 228
=469. The answer is 469.

There are 10 oranges in a
basket. We need to choose
2 oranges from the basket.
So the number of ways are
10C2. So the answer is (a).

The answer must be
somewhere where moss
is found. Of the above
choices, only forests are
known for having moss.
So the answer is (b,

The answer is (b), water
pollution, because it will
most likely harm the habi-
tat. The other answers are
not likely to harm the habi-
tat.

The formation of fossil fu-
els takes the longest time
to complete. So the an-
swer is (d).

CoT with Greedy Being Outperformed By Self-Consistency

Sampled Path 2

He had 10 socks. He threw away
3 old ones that didn’t fit. He
bought 36 new ones. So in total
he has 10 - 3 + 36 = 43 socks. The
answer is 4.

In the beginning there are 697
girls and the rest are boys. So, the
number of boys must be 697 - 228
=469 boys. The answer is 469.

There are 10 oranges in the bas-
ket. If you choose 2 oranges, you
have 10C2 =45 ways of choosing
2 oranges. So the answer is (a).

The answer must be a place where
the man is laying down and look-
ing up at trees. Of the above
choices, only forest is a place
where people lay down and look
at trees. So the answer is (b).

The answer is (b), water pollution.
Trees are good for a habitat, rain-
fall is necessary for a habitat, and
sunlight is necessary for a habitat.
So the answer is (b).

The process that takes the longest
time to complete is the forma-
tion of fossil fuels, which hap-
pens over millions of years. So
the answer is (d).

Table 12: Additional examples where self-consistency helps repair the errors over greedy decode on
LaMDA-137B. Two sampled reasoning paths that are consistent with the ground truth are shown.

Future Work

- Canwe design adaptive test-time compute methods?

- How do we reduce compute costs while keeping high accuracy?

Paper 2

“Large Language Monkeys: Scaling Inference Compute with Repeated
Sampling”

Research Goals

Scaling during training is heavily researched, but scaling during inference has not had the same

investment.

- Coverage: As the number of samples increases, what fraction of problems can we solve
using any sample that was generated?

- Precision: How often can we identify correct samples from our collection of generations?

Coverage and Precision Implementation

Step 1: Generate many candidate solutions. Step 2: Use a verifier to pick a final answer.

Verifier
(e.g. unit tests, proof
checkers, majority voting)

Problem: Input r
a number from i — x =int(input()) ...
»

stdin and ...

Problem 1 (coverage): Can we generate a correct Problem 2 (precision): Can we identify a correct
solution? solution from the generated samples?

Figure 1: The repeated sampling procedure that we follow in this paper. 1) We generate many independent candidate
solutions for a given problem by sampling from an LLM with a positive temperature. 2) We use a domain-specific
verifier (ex. unit tests for code) to select a final answer from the generated samples.

Task Datasets

1. GSMSK: grade-school level math word problems, using a random subset of 128 problems from test set.

2. MATH: harder math word problems that are generally harder than those from GSMS8K, using 128
random problems from test set.

3. MiniF2F-MATH: mathematics problems formalized into proof checking languages, using Lean4 as our
language, and evaluate on the 130 test set problems that are formalized from the MATH dataset.

4. CodeContests: competitive programming problems. Each problem has a text description, along with a set
of input-output test cases (hidden from the model) that can be used to verify the correctness of a candidate
solution. We enforce that models write their solutions using Python3.

5. SWE-bench Lite: real-world Github issues, where each problem consists of a description and a snapshot
of a code repository. To solve a problem, models must edit files in the codebase (in the Lite subset of
SWE-bench that we use, only a single file needs to be changed). Candidate solutions can be automatically

checked using the repository’s suite of unit tests.

Task Datasets (1. GSM8K)

Grade-school level math word problems, using a random subset of 128 problems from test set.

Problem: Beth bakes 4, 2 dozen batches of cookies in a week. If these cookies are shared amongst 16 people equally, how many cookies does
each person consume?

Solution: Beth bakes 4 2 dozen batches of cookies for a total of 4*2 = <<4*2=8>>8 dozen cookies

There are 12 cookies in a dozen and she makes 8 dozen cookies for a total of 12*8 = <<12*8=96>>96 cookies

She splits the 96 cookies equally amongst 16 people so they each eat 96/16 = <<96/16=6>>6 cookies

Final Answer: 6

Problem: Mrs. Lim milks her cows twice a day. Yesterday morning, she got 68 gallons of milk and in the evening, she got 82 gallons. This morning,
she got 18 gallons fewer than she had yesterday morning. After selling some gallons of milk in the afternoon, Mrs. Lim has only 24 gallons left. How
much was her revenue for the milk if each gallon costs $3.50?

Mrs. Lim got 68 gallons - 18 gallons = <<68-18=50>>50 gallons this morning.

So she was able to get a total of 68 gallons + 82 gallons + 50 gallons = <<68+82+50=200>>200 gallons.

She was able to sell 200 gallons - 24 gallons = <<200-24=176>>176 gallons.

Thus, her total revenue for the milk is $3.50/gallon x 176 gallons = $<<3.50*176=616>>616.
Final Answer: 616

Problem: Tina buys 3 12-packs of soda for a party. Including Tina, 6 people are at the party. Half of the people at the party have 3 sodas each, 2
of the people have 4, and 1 person has 5. How many sodas are left over when the party is over?

Solution: Tina buys 3 12-packs of soda, for 3*12= <<3*12=36>>36 sodas

6 people attend the party, so half of them is 6/2= <<6/2=3>>3 people

Each of those people drinks 3 sodas, so they drink 3*3=<<3*3=9>>9 sodas

Two people drink 4 sodas, which means they drink 2*4=<<4*2=8>>8 sodas

With one person drinking 5, that brings the total drank to 5+9+8+3= <<5+9+8+3=25>>25 sodas

As Tina started off with 36 sodas, that means there are 36-25=<<36-25=11>>11 sodas left

Final Answer: 11

https://paperswithcode.com/dataset/gsm8k

Task Datasets (2. MATH)

Harder math word problems that are generally harder than those from GSMS8K, using 128

random problems from test set.

MATH Dataset (Ours)
Problem: Tom has a red marble, a green marble, a blue
marble, and three identical yellow marbles. How many
different groups of two marbles can Tom choose?
Solution: There are two cases here: either Tom chooses
two yellow marbles (1 result), or he chooses two marbles
of different colors ((é) = 6 results). The total number of

distinct pairs of marbles Tom can choose is 1 4 6 =
Problem: If) > cos®™ @ = 5, what is cos 267
Solution: This geometric series is

1+cos?6 +cos?f+--- = .—L;; = 5. Hence,

cos?f = 4. Then cos 20 = 2cos®f — 1 =

Problem: The equation 22 + 2z = i has two complex
solutions. Determine the product of their real parts.
Solution: Complete the square by adding 1 to each side.
Then (z +1)2=14+i=eTV2,s0z+1==4e¥ V2.
The desired product is then

(1 oon (5) 72 (-1 —con(5) ¥ =
l—cosz(%)\/izl— 1+C0; §))\/—:

https://paperswithcode.com/dataset/math

Task Datasets (3. MiniF2F-MATH)

Mathematics problems formalized into proof checking languages, using Lean4 as our language,

and evaluate on the 130 test set problems that are formalized from the MATH dataset.

Two non-zero real numbers, a and b, satisfy ab = a —b. Which of

Naimal the following is a possible value of ¢ + 2 —ab? (A) -2 (B) 3t (C)

Language | ; (D) 1 (E) 2

theorem amc12_2000_p11
(ab: R)
(hp : a#0ADb#O0)
(hy : a*xb=a->b) :
a/b+b/a-ax*xb=2:=
begin
field simp [hy.1, hy.2],
simp only [h;, mul comm, mul sub],
ring,
end

https://paperswithcode.com/dataset/minif2f

Task Datasets (4. CodeContests)

Competitive programming problems. Each problem has a text description, along with a set of
input-output test cases (hidden from the model) that can be used to verity the correctness of a

candidate solution. We enforce that models write their solutions using Python3.

Problem Description Public Tests Private Tests
p
Mr. Chanek’s city can be represented as a plane. He wants to Input Input
build a housing complex in the city. There are some telephone 22 54
poles on the plane, which is represented by a grid a of size (n +1 101 10010
) x (m +1). There is a telephone pole at (x, y) if a_{x, y} = 1. For 000 00000
each point (x, y), define S(x, y) as the square of the Euclidean 000 01000
distance between the nearest pole nad (x, y). 00001
Formally, the square of the Euclidean distance between two 00100
points (x_1,y_1) and (x_2, y_2) is (x_2 - x)*2 + (y_2 - y_1)*2. To Output 00010
optimze building plan, the project supervisor asks you the sum
of all S(x, y) for each 0 < x < nand O <y < m. Help him by finding 18
the value of I {x=0}*{n{Z _{y=0}"{m}S(x, y}}. Outpot
o
y |

https://paperswithcode.com/dataset/codecontests

Task Datasets (5. SWE-bench Lite)

Real-world Github issues, where each problem consists of a description and a snapshot of a code
repository. To solve a problem, models must edit files in the codebase (in the Lite subset of
SWE-bench that we use, only a single file needs to be changed). Candidate solutions can be
automatically checked using the repository’s suite of unit tests.

® Issue -> @ Language Model E) Unit Tests

data leak in GBDT due to warm T
start (This is about the non-
histogram-based version of... 11 Generated PR

Pre PR PostPR Tests
join_struct_col
0-12 EEEN
vstack_struct_col

() Codebase MW sklearn
= dstack_struct_col

B sklearn/ D regs.txt O gradient_boosting.py =
I examples/ [I setup.cfg O helper.py
O READMErst (3 setup.py B utils =]

matrix_transform

euclidean_diff

SWE-bench is a dataset that tests systems' ability to solve GitHub issues automatically. The dataset collects 2,294 Issue-Pull Request pairs from 12 popular

Python repositories. Evaluation is performed by unit test verification using post-PR behavior as the reference solution. Read more about SWE-bench in our

paper!

https://www.swebench.com/index.html#test

Repeated Sampling

- : —— Llama-3-8B-Instruct —— Llama-3-70B-Instruct
SWE-bench Lite ---- Single-Attempt GPT-40

—— DeepSeek-Coder-V2-Instruct + Moatless Tools MiniF2F-MATH (Formal Proofs) CodeContests

---- Single-Attempt SOTA (CodeStory Aide + Mixed Models) 1 1

---- Single-Attempt GPT-40 + Moatless Tools

Coverage (pass@k)

102

o
n
f

_ GSMB8K (Oracle Verifier)
By

X
®
1]
(0]
®
[
o
<)
I
1
[
>
[}
Y]

Coverage (pass@k)

T T T T T 0-= T T
10! 10? 1 102 104 1 102 104
Number of Samples (k) Number of Samples (k) Number of Samples (k)

Figure 2: Across five tasks, we find that coverage (the fraction of problems solved by at least one generated sample)
increases as we scale the number of samples. Notably, using repeated sampling, we are able to increase the solve rate
of an open-source method from 15.9% to 56% on SWE-bench Lite.

Broader Set of Models

1. Llama 3: Llama-3-8B, Llama-3-8B-Instruct, Llama-3-70B-Instruct.
2. Gemma: Gemma-2B, Gemma-7B [52].
3. Pythia: Pythia-70M through Pythia-12B (eight models in total) [9].

Repeated Sampling across Model Sizes, Families, and Post-Training

Llama-3-8B —— Llama-3-8B-Instruct —— Llama-3-70B-Instruct Gemma-2B — Gemma-7B
—— Pythia-70M —— Pythia-160M Pythia-410M Pythia-1B Pythia-1.4B
Pythia-2.8B Pythia-6.9B Pythia-12B

MATH (Oracle Verifier) 10 CodeContests

o
©

0.6

o
>

=
x
®
1]
(7]
©
[
o
o
©
1
[
>
o
)

©
[N}

10! 102 103

10! 102 103
Number of Samples (k)

Number of Samples (k)

Figure 3: Scaling inference time compute via repeated sampling leads to consistent coverage gains across a variety of
model sizes (7T0M-70B), families (Llama, Gemma and Pythia) and levels of post-training (Base and Instruct models).

FLOPs as a Cost Metric

FLOPsPerToken(ContextLen) =~ 2 % (NumParameters + 2 x NumLayers % TokenDim * ContextLen)

NumPromptTokens

TotallnferenceFLOPs ~ (Z FLOPSPerToken(t)) +

t=1

NumDecodeTokens
(Z FLOPsPerToken(t + NumPromptTokens) * NumCompletions)
t=1

Repeated Sampling to Balance Performance and Cost

—— Llama-3-8B-Instruct —— Llama-3-70B-Instruct

MiniF2F-MATH CodeContests MATH (Oracle Verifier) @ GSM8K (Oracle Verifier)
1.0, 1.0+ 1.0

1 [
0.81 0.81 08

0.6 0.6 0.6

o
o

o
IS

0.44 0.4

0.2 // 0.2 0.2

10‘14 10’15 1016 107 0.0 1014 10‘15 10‘16 10’17 0'01013 10 1015 101 10Y7 0'01013 10‘14 1015 106 1017

Total Inference FLOPs Total Inference FLOPs Total Inference FLOPs Total Inference FLOPs

o
=]
©
-
o
>
=}
(S

ot
N

Figure 4: Comparing cost, measured in number of inference FLOPs, and coverage for Llama-3-8B-Instruct and Llama-
3-70B-Instruct. We see that the ideal model size depends on the task, compute budget, and coverage requirements.
Note that Llama-3-70B-Instruct does not achieve 100% coverage on GSM8K due to an incorrectly labelled ground
truth answer: see Appendix E.

Cost per
Model attempt
(USD)

DeepSeek-Coder-V2-Instruct 0.0072 5 29.62 10.8 1x
GPT-40 0.13] 24.00 39 3.6x

Number of Issues Total cost Relative
attempts solved (%) (USD) total cost

Claude 3.5 Sonnet 0.17 1 26.70 51 4.7x

Table 1: Comparing API cost (in US dollars) and performance for various models on the SWE-bench Lite dataset
using the Moatless Tools agent framework. When sampled more, the open-source DeepSeek-Coder-V2-Instruct model
can achieve the same issue solve-rate as closed-source frontier models for under a third of the price.

Coverage versus Sample Budget

1. 'The relationship between coverage and the number of samples can often be modelled with
an exponentiated power law.
2. For a given task, the coverage curves of different models from the same family resemble

S-curves with similar slopes but distinct horizontal offsets.

—— Coverage Power Law Fit, ¢ = exp(ak®)

Llama-3-8B-Instruct Llama-3-70B-Instruct Llama-3-8B-Instruct Llama-3-70B-Instruct
MATH (Oracle Verifier) MATH (Oracle Verifier) CodeContests CodeContests

(a=-1.33, b=-0.43) (a=-0.75, b=-0.46) (a=-3.88, b=-0.11) (a=-2.52, b=-0.11)
Error: 0.003 + 0.0027 Error: 0.0056 + 0.0036 Error: 0.002 + 0.0015 Error: 0.0056 + 0.0027

_—— 10 - — 1.0 1.0
/
0.8 0.8 0.8

0.6 / 0.6 0.6

04] 0.4 0.4
0.2 0.2 ___— 02 —

0700 1ot 1or 108 10f C01p0 1o 167 168 10f 00160 170717 0 105 1of 010 TTor 1o 108 10t
Pythia-70M Pythia-12B Gemma-2B Llama-3-8B-Instruct
MATH (Oracle Verifier) MATH (Oracle Verifier) MATH (Oracle Verifier) MiniF2F-MATH
(a=-7.59, b=-0.18) (a=-3.92, b=-0.35) (a=-2.45, b=-0.38) (a=-1.33, b=-0.08)
_ Error: 0.0052 + 0.0071 Error: 0.0189 + 0.0118 Error: 0.0218 + 0.014 Error: 0.0297 + 0.0157
X 1.0 1.0 1.0 1.0

e

©®
no.8 0.8 0.8 0.8

0.6 0.6 0.6
()

©0.4 0.4 0.4 / 0.4 i =
[\

502 = 02 / 0.2 02{ =

> -

S 0.0 - 0.0 0.0 0.0
O™Y100 100 102 103 10° 10° 10' 102 10° 10* " 10° 10! 102 103 10 " 10° 10 102 103 10°

Number of Samples (k) Number of Samples (k) Number of Samples (k) Number of Samples (k)

Figure 5: The relationship between coverage and the number of samples can be modelled with an exponentiated power
law for most tasks and models. We highlight that some curves, such as Llama-3-8B-Instruct on MiniF2F-MATH, do
not follow this trend closely. We show the mean and standard deviation of the error between the coverage curve and
the power law fit across 100 evenly sampled points on the log scale.

Scaling Laws and Coverage Curves

Llama-3 Gemma Pythia Llama-3
MATH (Oracle Verifier) - MATH (Oracle Verifier) 95 MATH (Oracle Verifier) - CodeContests

e

=
o

Gemma-2B Pythia-1.4B = |lama-3-70B-Instruct
- Gemma-7B Pythia-12B = Llama-3-8B-Instruct
0.8 0.8 Pythia-160M 0.8 Llama-3-8B
Pythia-1B
Pythia-2.8B
Pythia-410M
Pythia-6.9B /

0.4 0.4 Pythia-70M /4 0.4

= Llama-3-70B-Instruct 0.2 0.2 0.2
= Llama-3-8B-Instruct

Llama-3-8B E
100 102 104 0.0 100 10! 102 103 104 0.0 100 102 104 0.0 1071 10! 103

k / pass@k~1(0.48) k / pass@k~1(0.2) k / pass@k~1(0.02) k / pass@k~1(0.07)

e
©

o
o

0.6 0.6 0.6

o
»

X
®
[}
0
®
[
b
[
o
©
-
0
>
o
)

o
[N)

o
o

Figure 6: Overlaying the coverage curves from different models belonging to the same family. We perform this overlay
by horizontally shifting every curve (with a logarithmic x-axis) so that all curves pass through the point (1, ¢). We pick
¢ to be the maximum pass@1 score over all models in the plot. We note that the similarity of the curves post-shifting
shows that, within a model family, sampling scaling curves follow a similar shape.

Scalability of Verification Methods

GSMS8K and MATH lack automatic verification tools

1. Majority Vote: We pick the most common final answer

2. Reward Model + Best-of-N: We use a reward model to score each solution, and pick the
answer from the highest-scoring sample.

3. Reward Model + Majority Vote: We calculate a majority vote where each sample is

weighted by its reward model score.

Pass@1l # Problems # CoT Graded Correct CoT Incorrect CoT Incorrect Ground Truth

0-10% 5 15 11 1 1 problem, 3 CoTs
10-25% 10 30 27 0 problems

3
25-75% 29 30 28 2 0 problems
0

75-100% 84 30 30 0 problems

Table 2: Human evaluation of the validity of the Chain-of-Thought reasoning in Llama-3-8B-Instruct answers to
GSMS8K problems. 3 chains of thought were graded per problem. Even for difficult questions, where the model only

gets < 10% of samples correct, the CoTs almost always follow valid logical steps. For the model generations and
human labels, see here.

Software Task Verification

“However, tools like unit tests take a black-box approach to verifying a piece of code and are not
as comprehensive as methods like proof checkers. These imperfections in the verification process

can lead to false positives and/or false negatives that are important to consider.”
when applying repeated sampling

1. Flaky Tests in SWE-bench Lite
2. False Negatives in CodeContests

B Problem is correct with majority voting Bl Problem is incorrect with majority voting

Llama-3-8B-Instruct Llama-3-8B-Instruct Llama-3-70B-Instruct Llama-3-70B-Instruct
GSM8K) MATH GSM8K MATH

)
<)
©
L
c
@
v
-
@
o
2
o
£
©
n
-
v
@
1=
e
o
o

Problem Index Problem Index Problem Index Problem Index
(Sorted by Correct Fraction) (Sorted by Correct Fraction) (Sorted by Correct Fraction) (Sorted by Correct Fraction)

Figure 8: Bar charts showing the fraction of samples (out of 10,000 samples) that are correct, for each problem in the
subsets of GSM8K and MATH we evaluate on. There is one bar per problem, and the height of the bar corresponds to
the fraction of samples that arrive at the correct answer. Bars are green if self-consistency picked the correct answer
and are red otherwise. We highlight that there are many problems with correct solutions, where the correct solutions
are sampled infrequently.

Future and Limitations

1. Solution Diversity: relying on a positive sampling temperature as the sole mechanism for
creating diversity among samples; combining this token-level sampling with other,
higher-level approaches may be able to further increase diversity (AlphaCode metadata
tags).

2. Multi-Turn Interactions: Providing models with execution feedback from these tools
should improve solution quality.

3. Learning From Previous Attempts: Currently, our experiments fully isolate attempts from
each other. Access to existing samples, particularly if verification tools can provide feedback

on them, may be helpful when generating future attempts.

Paper 3

“Scaling LLM Test-Time Compute Optimally can be More Effective
than Scaling Model Parameters”

Can we enable language models to most effectively make
use of additional computation at test time so as to
improve the accuracy of their response?

Two Key Approaches to Scaling Test-Time Compute

Iteratively Revising Answers at Test-time

1. Searching Against a Verifier T —
(Process-Based Reward Model - PRM):
reward model that evaluates and
reinforces intermediate reasoning steps I
rather than just final outputs "

o
Inference Tokens to Pretraining Tokens

Test-time Search Against a PRM Verifie!
Compari g Tes! and P g C mpute
Compute Optimal Search FLOF' M tche d E

2. Updating Model’s Distribution Over
Response Adaptively

Compute-Optimal Strategy Background

Test-Time Compute Optimal Scaling Strategy: A method for adaptively allocating test-time computation resources to maximize
model performance on a given prompt, selecting the most effective strategy based on prompt difficulty.

Model-Predicted Difficulty: A method for estimating the difficulty of a given prompt by using a learned verifier’s predicted
correctness scores across multiple model-generated responses, rather than relying on ground-truth correctness checks.

Oracle Difficulty: A difficulty estimation approach that categorizes questions based on a model’s actual pass rate using ground-truth
correctness checks, serving as a more precise but less practical method for determining test-time compute allocation

Compute-Optimal Strategy

Adapting Test-Time Compute per Prompt
Dynamically allocates test-time compute
depending on difficulty

Key finding: Using this adaptive strategy, the
model achieves the same performance as a
best-of-N approach while using 4x less
compute.

Best-of-N: sampling N outputs in parallel
from a base LLM and choosing whichever
scores highest from a verifier

Compute Optimal Search

>
o
©
g
=
Q
o
<
g
=
=
<
=

Generation Budget

Figure 4 | Comparing compute-optimal test-time compute
allocation against baselines with PRM search. By scaling test
time compute per the notion of question difficulty, we find that
we can nearly outperform PRM best-of-N using up to 4X less
test-time compute (e.g. 16 verses 64 generations). “Compute-
optimal oracle” refers to using oracle difficulty bins derived
from the groundtruth correctness information, and “compute-
optimal predicted” refers to using the PRM’s predictions to
generate difficulty bins. Observe that the curves with either type
of difficulty bins largely overlap with each other.

Experimental Setup

1. Datasets: focus on MATH benchmark
2. Models: Conduct analysis on PaLM-25*

3. Evaluation: Compare Test-time Compute Scaling vs. Pretraining Scaling

Experimental Results

1. Scaling Test-Time Compute Can Outperform a 14x Larger Model
2. Different Strategies Work Better for Different Difficulty Levels

3. Search-Based Approaches Can Improve Answer Quality

4. Combining Both Methods is Most Effective

Implications

1. Smaller Models and More test-time compute can cause a cheaper deployment without
sacrificing the model performance

2. Adaptive test time compute has a more efficient resource use

3. LLMs could iteratively refine their outputs and self-improve with minimal reliance on

human supervision

Scaling Search-Based Methods

1. Process-based reward models (PRMs) evaluate solutions step-by-step

2. 3search methods were compared
- Best-of-N search
- Beam Search

- Lookahead Search: An enhanced beam search that simulates up to & future steps to

improve value estimation before selecting the best current step

3. Finding: beam search works well at low compute but over optimization hurts

performance at a high compute

Optimizing PRM Via Search Methods

Best-of-N Beam Search Lookahead Search

Baam search, but o aach step
| ollowtKstess i advance, using
the PRM value at the an:

Continue Search from
the top-N options

Select the best final answer using the verifier Select the best final answer using the verifier

Key:

= Apply Verifier = Full Solution = Intermediate solution step = Selected by verifier = Rejected by verifier

Figure 2 | Comparing different PRM search methods. Left: Best-of-N samples N full answers and then selects the best
answer according to the PRM final score. Center: Beam search samples N candidates at each step, and selects the top M
according to the PRM to continue the search from. Right: lookahead-search extends each step in beam-search to utilize a k-step
lookahead while assessing which steps to retain and continue the search from. Thus lookahead-search needs more compute.

Comparing PRM Search Methods Comparing Beam Search and Best-of-N by Difficulty Level

Best-of-N Weighted
Majority

Beam; M := sqrt(N)
Beam; M := 4

1 Step Lookal

MATH Test Accuracy (%)

>
[9)
©
£
=]
5]
5]
<
3
[\
i
=
<
=

3 Step Lookal

3 Step Lookahead; M
2° Py 2 1 2 3 4

Generation Budget Test Questions Binned by Increasing Difficulty Level

Figure 3 | Left: Comparing different methods for conducting search against PRM verifiers. We see that at low generation
budgets, beam search performs best, but as we scale the budget further the improvements diminish, falling below the best-of-N
baseline. Lookahead-search generally underperforms other methods at the same generation budget. Right: Comparing beam
search and best-of-N binned by difficulty level. The four bars in each difficulty bin correspond to increasing test-time compute
budgets (4, 16, 64, and 256 generations). On the easier problems (bins 1 and 2), beam search shows signs of over-optimization
with higher budgets, whereas best-of-N does not. On the medium difficulty problems (bins 3 and 4), we see beam search
demonstrating consistent improvements over best-of-N.

Scaling Iterative Revisions

1. Instead of searching for the best answer, the model refines its own response

2. Finding: Sequential revisions outperform parallel sampling in most cases

Tradeoff between Parallel and Sequential Compute

1. Easy Problems: Sequential revisions are
better (small fixes improve accuracy)

2. Hard Problems: Parallel sampling helps
(exploring different approaches)

Compute Optimal Revisions

=== Majority
—— Best-of-N Weighted
@® Compute Optimal Oracle
Compute Optimal Predicted
@® Parallel

N
o

w
a

w
o

N
3]

8
>
o
g
-1
Q
(5]
<
B
=
T
<
=

5

Generation Budget

Figure 8 | Comparing compute-optimal test-time compute
allocation against the parallel compute baseline with our re-
vision model. By optimally scaling test-time compute according
to question difficulty, we find that we can outperform best-of-N
using up to 4x less test-time compute (e.g. 64 samples verses
256). “Compute-optimal oracle” refers to using the oracle
difficulty bins derived from the ground truth correctness infor-
mation, and “compute optimal predicted” refers to using the
PRM’s predictions to produce model-predicted difficulty bins.

FLOPs Analysis

Matching FLOPs for a 14x Smaller Training Model Requires Significant Pre Training Cost

¥ = ZNDinference

Pretraining FLOPs vs Test-Time FLOPs

Pretraining FLOPs: compute used to train a model

Test-Time FLOPs: compute used during inference

If pretraining FLODPs are increased ->get a larger model with potentially better raw performance
If inference FLOPs increased -> model can refine its answers via self-revisions, search, or

verification to irnprove accuracy

FLOPs Tradeoft Between Pre Training and Test-Time Compute

3 Cases:

- R>>1(More Inference Tokens) —Pre Training is better
- R =1 (Balanced inference and pretraining) —Test-time compute is effective

- R <<1 (Few Inference tokens) — Test-time compute is best

S
>
%)
©
—
>
3]
o
<
)
>
()
A
2
=]
L
=
(@]
=
<C
=

Comparing Test-time and Pretraining Compute

Revisions

5]

2.‘. 25 2_
Proportional to Inference FLOPs

% Pretraining Compute

MATH Difficulty Level Accuracy (%)

w@w Teost-time Compute

PRM Search

*

“

2

Proportional to Inference FLOPs

——e R>>1 R~=1 R=<<1

Difficulty Level

Limitations and Future Work

- Hard problerns still need pretraining
- Better difficulty estimation necessary for adaptive compute

. Combining test-time compute with pre training strategies may yield better results

Conclusions

Questions?

