Iz

IVERSITY
7VIRGINIA

CS 6501 Natural Language Processing

(Spring 2025)

Yu Meng
University of Virginia
yumeng5@virginia.edu

Jan 15, 2025

mailto:yumeng5@virginia.edu

il UNIVERSITYs VIRGINIA

(Recap) Course Information & Logistics

* This course is designed to be a research-oriented graduate-level course

* Seminar-style: a substantial focus on reading, presenting and discussing important
papers and conducting research projects

* A comprehensive overview of cutting-edge developments in NLP
* Prerequisites: CS 4501 NLP or CS 4774 (having deep learning background is important!)

* This course may benefit you if
. You are working on NLP research (PhD/MS research students)
. Your research uses NLP models/tools
. You aim for a job that involves using NLP models/tools
. You are very interested in the cutting-edge topics of NLP and willing to spend time to learn

il UNIVERSITYo VIRGINIA

(Recap) Course Format & Grading

* Course Website: https://yumeng5.github.io/teaching/2025-spring-cs6501
Schedule (Subject to Changes))

Date Topic Papers Slides
Introduction to Large Language Models
113 Course Overview - overview

115 Language Model Architecture Distributed Representations of Words and Phrases and their Im_basics
Compositionality (word2vec)

Attention Is All You Need (Transformer)

120 No Class (MLK Holiday) - -

1/22 Language Model Pretraining & Fine- Language Models are Unsupervised Multitask Learners (GPT-2) pretrain

Tuning BERT: Pre-training of Deep Bidirectional Transformers for Language

Understanding
RoBERTa: A Robustly Optimized BERT Pretraining Approach

ELECTRA: Pre-training Text Encoders as Discriminators Rather Than
Generators

BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension

Exploring the Limits of Transfer Learning with a Unified Text-to-Text
Transformer (T5)

https://yumeng5.github.io/teaching/2025-spring-cs6501

i UNIVERSITY,VIRGINIA

(Recap) Course Format & Grading: Paper Presentation (30%)

* Starting from the 4th lecture (1/27), each lecture will be presented by a group of 1 or

2 students
Groups of two are encouraged, but individual presentations are also acceptable

* Every group presents one lecture (3 papers)

* Signup sheet: https://docs.google.com/spreadsheets/d/1h4uukKnL8T71YUtbORgth-
y6AAkFZnaZsvZV5ygrzxjw/edit?usp=sharing

* You can sign up for the topic you are interested in — slots are first come, first served!

* The dates listed on the course website are subject to change — please sign up based on
the topic rather than the date

4/59

https://docs.google.com/spreadsheets/d/1h4uuKnL8T71YUtbORgth-y6AAkFZnaZsvZV5ygrzxjw/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1h4uuKnL8T71YUtbORgth-y6AAkFZnaZsvZV5ygrzxjw/edit?usp=sharing

il UNIVERSITYo VIRGINIA

(Recap) Course Format & Grading: Paper Presentation (30%)

* Presentation duration: strictly limited to 60 minutes, followed by a 10-minute
guestion-and-answer session with the audience & instructor

e Deadline: Email your slides to the instructor and TAs at least 48 hours before your

presentation (e.g., if presenting on Monday, slides should be emailed by Saturday
2pm)

* You will receive feedback from the instructor to improve your slides (if necessary, the
instructor may schedule a meeting with your team to go over the slides)

e Late submissions result in a 50% presentation grade deduction
* Detailed grading rubrics and tips can be found on the course website

* First three student lectures automatically receive 5%, 3%, 1% extra credit of final
grade

il UNIVERSITYo VIRGINIA

(Recap) Course Format & Grading: Participation (20%)

* Starting from the 4th lecture (1/27), everyone is required to complete two mini-
assignments

* Pre-lecture question: read the 3 papers to be introduced in the lecture, and submit a
guestion you have when you read them

* Post-lecture feedback: provide feedback to the presenters after the lecture

« We'll use Google Forms to collect pre-lecture questions and post-lecture feedback and
share them with the presenters

* Deadlines: pre-lecture questions are due one day before the lecture (e.g., For Monday

lectures, you need to submit the question by Sunday 11:59 pm); post-lecture feedback
is due each Friday (both Monday & Wednesday feedback is due Friday 11:59 pm)

e Lectures are not recorded, but slides will be posted on the course website

il UNIVERSITYo VIRGINIA
(Recap) Course Format & Grading: Participation (20%)

* Besides student presentations, we’ll also invite leading researchers from academia and
industry to introduce their cutting-edge research

* Guest lectures do not have pre-lecture questions/post-lecture feedback, and we’ll
directly take attendance on Zoom

* You can get extra participation credit if you ask questions during guest lectures (details
shared later)

* At the end of the semester, you’ll get 2% extra credit of final grade if you complete
the teaching evaluation survey about this course (sent from Student Experiences of

Teaching)

7/59

il UNIVERSITYo VIRGINIA

(Recap) Course Format & Grading: Project (50%)

* Complete a research project, present your results, and submit a project report

* Workinateam of 1 or 2 (a larger team size requires prior approval from the
instructor) — may or may not be the same team as your presentation group

* (Type 1) A comprehensive survey report: carefully examine and summarize existing
literature on a topic covered in this course; provide detailed and insightful discussions
on the unresolved issues, challenges, and potential future opportunities within the
chosen topic

* (Type 2) A hands-on project: not constrained to the course topics but must be
centered around NLP; doesn’t have to involve large language models (e.g., train or
analyze smaller-scale language models for specific tasks); eligible for extra credits if
publishable

* Project proposal: 5% (ddl: 2/5); Mid-term report: 10% (ddl: 3/10); Final presentation
(ddl: 4/15) and final report: 35% (ddl: 5/6)

'A‘

UNIVERSITYs VIRGINIA

(Recap) Overview of Course Contents

* Introduction to Language Models

Language Model Architecture

Language Model Pretraining & Fine-Tuning
In-Context Learning

Scaling and Emergent Ability

* Reasoning with Language Models

Chain-of-Thought Generation
Inference-Time Scaling

* Knowledge, Factuality and Efficiency

Parametric Knowledge in Language Models
Retrieval-Augmented Language Generation (RAG)
Long-Context Language Models

Efficiency

Language Model Post-Training

- Instruction Tuning

. Reinforcement Learning from Human Feedback (RLHF)
Language Agents

. Language Agent Basics

. Language Models for Code

. Multimodal Language Models

Ethical Considerations of Language Models

. Security and Jailbreaking
. Bias and Calibration
. Privacy and Legal Issues

Looking Forward

9/59

i UNIVERSITY,VIRGINIA

Agenda: Language Model Architecture

* Introduction to Text Representations

10/59

il UNIVERSITYo VIRGINIA

Motivation: Representing Texts with Vectors

* Word similarity computation is important for understanding semantics

Word similarity (on a scale from 0 to 10)

manually annotated by humans Word semantics can be multi-faceted
vanish disappear 9.8 Valence Arousal Dominance
belief impression 5.95 courageous 8.05 5.5 7.38
muscle bone 3.65 music 7.67 5.57 6.5
modest flexible 0.98 heartbreak 2.45 5.65 3.58

hole agreement 0.3 cub 6.71 3.95 4.24

* How to represent words numerically? Using multi-dimensional vectors!

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

https://web.stanford.edu/~jurafsky/slp3/6.pdf

i UNIVERSITY,VIRGINIA

Vector Semantics

Represent a word as a point in a multi-dimensional semantic space

A desirable vector semantic space: words with similar meanings are nearby in space

not good
bad
to by s dislike whist
that now incredibly bad
are worse
a i you
than with is
very good incredibly good
amazing fantastic
terrific nice wonderful

good

2D visualization of a desirable high-dimensional vector semantic space

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf

12/59

https://web.stanford.edu/~jurafsky/slp3/6.pdf

il UNIVERSITYo VIRGINIA

Vector Space Basics

Vector notation: an N-dimensional vector v = [vl,vz, ce ,UN] e RN
Vector dot product/inner product:
N
dot product(v,w) = v - w = viwy + vows + - - - + VW, = Zviwi
1=1

Vector length/norm:
Other (less commonly-used) vector norms:
Manhattan norm, p-norm, infinity norm...

v|=+vVv-v=

N
2
Z Ui
=1

Cosine similarity between vectors:

N
cos(v,w) = vw 2iz1 Vil

[vffwl \/Zfll Ui2 \/Zi\rzl wi2

il UNIVERSITYs VIRGINIA
Vector Space Basics: Example

« Consider two 4-dimensional vectors v = [1,0,1,0] € R* w =[0,1,1,0] € R*

* Vector dot product/inner product:

N
V-w = E ’Uz"wz'=].
=1

e Vector length/norm:

lv| = iv?=\/§ lw| = iw?zﬁ
\ i=1 \ i=1
e Cosine similarity between vectors:
_vew 1
cos(v,w) = ollw] 2

il UNIVERSITYo VIRGINIA

Vector Similarity

* Cosine similarity is the most commonly used metric for similarity measurement

. Symmetric: cos(v, w) = cos(w, v) :

. Not influenced by vector length \ /

= Hasanormalized range: [-1, 1] N/ __ Cosinefunction values

= Intuitive geometric interpretation under different angles
s X 4

o o
J y y >/yv
< > < > 4‘/£ >

- Angle 6 close to © - Angle 6 close to 90 - Angle 6 close to 180
- Cos(B) close to 1 - Cos(B) close to © - Cos(6) close to -1
- Similar vectors - Orthogonal vectors - Opposite vectors

v

Figure source: https://www.learndatasci.com/glossary/cosine-similarity/ 15/59

https://www.learndatasci.com/glossary/cosine-similarity/

il UNIVERSITYs VIRGINIA

How to Represent Words as Vectors?

« Given avocabulary ¥V = {good, feel, I, sad, cats, have}
* Most straightforward way to represent words as vectors: use their indices
* One-hot vector: only one high value (1) and the remaining values are low (0)

* Each word is identified by a unique dimension

Vgood = [1,0,0,0,0,0]
vieel = [0,1,0,0,0,0]
=[0,0,1,0,0,0]
Vsad = [0,0,0,1,0,0]
Veats = [0,0,0,0,1,0]
Vhave = [0,0,0,0,0,1]

'A‘

il UNIVERSITYo VIRGINIA

Represent Sequences by Word Occurrences

Vgood = [1,0,0,0,0,0
* Consider the mini-corpus with three documents

[]

Vfeel — [Oa 11 01 01 01 0]

d; = “I feel good” =10,0,1,0,0,0]

.) Vsaq = [0,0,0,1,0,0]

do = “I feel sad Yeuts = [0,0,0,0,1,0
[

ds = “I have cats” Vhave = [0,0,0,0,0,1]

e Straightforward way of representing documents: look at which words are present

TR, cos(vq,,Vd,) =
Vg4, = [1,171’0 070] Document vector similarity (va,, va,)

va, =[0,1,1,1,0,0] = co8(v4,, Va,) =
V4; = [0, 0, 1, 0, 1, 1]

cos(Vg,, Va;) =

Wl WL WIN

i UNIVERSITY,VIRGINIA

Agenda: Language Model Architecture

* Word Representations (Word2Vec)

18/59

il UNIVERSITYo VIRGINIA
Word2Vec Paper

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com

Paper: https://arxiv.org/pdf/1310.4546

https://arxiv.org/pdf/1310.4546

il UNIVERSITYo VIRGINIA

Overview

* The earliest & most well-known word embedding learning method (published in 2013)

e Two variants: Skip-gram and CBOW (Continuous Bag-of-Words)

* Mainly discuss Skip-gram in this lecture

INPUT PROJECTION OUTPUT INPUT PROJECTION OUTPUT

w(t-2) w(t-2)

w(t-1) w(t-1)

SUM

e J w(t) w(t) —»}

N

~N

w(t+1) w(t+1)

w(t+2) w(t+2)

cBow Skip-gram

20/59

il UNIVERSITYs VIRGINIA

Distributional Hypothesis

Words that occur in similar contexts tend to have similar meanings
A word’s meaning is largely defined by the company it keeps (its context)

Example: suppose we don’t know the meaning of “Ong choy” but see the following:
. Ong choy is delicious sautéed with garlic
. Ong choy is superb over rice
. ... ong choy leaves with salty sauces

And we’ve seen the following contexts:

. ... spinach sautéed with garlic over rice
. ... chard stems and leaves are delicious
. ... collard greens and other salty leafy greens

Ong choy = water spinach!

Example source: https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf 21/59

https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf

il UNIVERSITYs VIRGINIA

Word Embeddings: General Idea

* Learn dense vector representations of words based on distributional hypothesis

* Semantically similar words (based on context similarity) will have similar vector

representations

 Embedding: a mapping that takes elements from one space and represents them in a

different space

v = [1,0,0,0,0,0, . ..
vy = [0,1,0,0,0,0,. ..
Venat = [0,0,1,0,0,0, ...
Vgood = [0,0,0,1,0,0,...
Vnice = [0,0,0,0,1,0, ...
Vbad — [0,0,0,0,0, 1, ce

_ e — e

=)

not good b
ad
to by 5 dislike SERA
that now incredibly bad
I are worse
a i you
than with is
very good incredibly good
amazing fantastic
terrific nice wonderful

good

2D visualization of a word embedding space

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf 22/59

https://web.stanford.edu/~jurafsky/slp3/6.pdf

il UNIVERSITYo VIRGINIA

Learning Word Embeddings

 Assume a large text collection (e.g., Wikipedia)
* Hope to learn similar word embeddings for words occurring in similar contexts
* Construct a prediction task: use a center word’s embedding to predict its contexts!

* Intuition: If two words have similar embeddings, they will predict similar contexts,
thus being semantically similar!

Predicted contexts Predicted contexts

sautéed sautéed

/ garlic / garlic
Vong choy i: rice Uspinach i: rice
salty

salty

leaves leaves

23/59

il UNIVERSITYo VIRGINIA
Word Embedding Is Self-Supervised Learning

Self-supervised learning: a model learns to predict parts of its input from other parts

of the same input
is
é superb

\ over

rice

e Self-supervised learning vs. supervised learning:

Self-supervised learning: no human-labeled data — the model learns from unlabeled data by

generating supervision through the structure of the data itself
Supervised learning: use human-labeled data — the model learns from human annotated

Input: Ong choy is superb over rice Prediction task: Ong choy

input-label pairs

ik UNIVERSITYs VIRGINIA
Word2Vec Setting

* Input: a corpus D —the larger, the better!

* Training data: word-context pairs (w, ¢) where w is a center word, and c is a context
word
. Each word in the corpus can act as center word
. Context words = neighboring words of the center word in a local context window (+[words)

e Parameters to learn: 8 = {v,,, v.} — each word has two vectors (center word
representation & context word representation)

* The center word representations v,, are usually used as the final word embeddings

* Number of parameters to store: dX|V|
. d is the embedding dimension; usually 100-300
. |V | is the vocabulary size; usually > 10K

ik UNIVERSITYs VIRGINIA
Word2Vec Training Data Example
* Input sentence: “there is a cat on the mat”

e Suppose context window size = 2

* Word-context pairs as training data:

. (there, is), (there, a) there is a cat on the mat
. (is, there), (is, a), (is, cat) there is a cat on the mat
. (a, there), (a, is), (a, cat), (a, on) there is a cat on the mat
. (cat, is), (cat, a), (cat, on), (cat, the) there is a cat on the mat
. (on, a), (on, cat), (on, the), (on, mat) there is a cat on the mat
. (the, cat), (the, on), (the, mat) there is a cat on the mat
. (mat, on), (mat, the) there is a cat on the mat

* “Skip-gram”: skipping over some context words to predict the others!

* Training data completely derived from the raw corpus (no human labels!)

il UNIVERSITYs VIRGINIA
Word2Vec Objective (Skip-gram)

* Intuition: predict the contexts words using the center word (semantically similar
center words will predict similar contexts words)

* Objective: using the parameters 8 = {v,,, .} to maximize the probability of
predicting the context word ¢ using the center word w

max H '"_(____)_} Probability expressed as a function
________ H of the model parameters

* How to parametrize the probability?

27/59

s UNIVERSITYsf VIRGINIA

Word2Vec Probability Parametrization

* Word2Vec objective: max H pe(clw)
(w,c)eD

* Assume the log probability (i.e., logit) is proportional to vector dot product
log pe(clw) ox v, - vy

* Rationale: a larger vector dot product can indicate a higher vector similarity

28/59

il UNIVERSITYo VIRGINIA

Word2Vec Parameterized Objective

* Word2Vec objective: max H pe(clw)
(w,c)eD

* Assume the log probability (i.e., logit) is proportional to vector dot product
log pe(clw) ox v, - vy

* The final probability distribution is given by the softmax function:

polchw) = <P Pu) 3 polelw) =1

Clelvl eXp('Ucl * vw) C,€|V|

* Word2Vec objective (log-scale):

max Y Togpo(clu) = Y (ve-vu—log 3 explo -va)

(w,c)eD (w,c)eD ' €[V

il UNIVERSITYs VIRGINIA

Word2Vec Negative Sampling

* Challenges with the original objective: Sum over the entire vocabulary — expensive!

mgX Z logpg(c|'w) = Z Ve Vy — logi Z ieXp('vc’ . 'U'w)

(w,c)€D (w,c)eD ' elVv|]

* Randomly sample a few negative terms from the vocabulary to form a negative set N

* How to sample negatives? Based on the (power-smoothed) unigram distribution

st (- H G)

04

X

Rare words get a bit boost in
sampling probability A

0.2 04 06 0.8 1 30 / 59

ik UNIVERSITYsf VIRGINIA

Word2Vec Negative Sampling

Formulate a binary classification task; predict whether (w, c) is a real context pair:

: y =o(x)
(True|c, w) = o(v, - vuy) L ﬁ
ue|lc,w) =o c w) — 0.5
be , 1 + exp(—v¢ - V) ‘/

-6 -4 -2 0 2 4 6
Maximize the binary classification probability for real context pairs, and minimize for
negative (random) pairs

max log o 'vc Vo) E log o 'vc/ 'vw)
()
cEN
i v
Real context pair Negative context pair

31/59

il UNIVERSITYs VIRGINIA

Word2Vec Optimization

 How to optimize the following objective?

mg,xloga Ve - Vy) Z log o(ver - Vy)
ceN
* Stochastic gradient descent (SGD)!
e First, initialize parameters 8 = {v,,, v} with random d-dimensional vectors

* Ineach step: update parameters in the direction of the gradient of the objective
(weighted by the learning rate) Cost

A

Learning step

00t « 0 — VoLl _ o

. .
. .
. .
. .
. .
. .
. .~

Minimum

Learning rate Loss function

1 > e
Random 0*

initial value

Figure source: https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture02-wordvecs?2.pdf

32/59

https://web.stanford.edu/class/cs224n/slides/cs224n-spr2024-lecture02-wordvecs2.pdf

il UNIVERSITYo VIRGINIA

Word2Vec Hyperparameters

* Word embedding dimension d (usually 100-300)
. Larger d provides richer vector semantics
. Extremely large d suffers from inefficiency and curse of dimensionality

* Local context window size [(usually 5-10)
. Smaller [learns from immediately nearby words — more syntactic information
. Bigger [learns from longer-ranged contexts — more semantic/topical information

* Number of negative samples k (usually 5-10)
. Larger k usually makes training more stable but also more costly

* Learning rate n (usually 0.02-0.05)

ik UNIVERSITYs VIRGINIA

Summary: Word2Vec

Distributional hypothesis
. Words that occur in similar contexts tend to have similar meanings
. Infer semantic similarity based on context similarity

Word embeddings
. Construct a prediction task: use a center word’s embedding to predict its contexts
. Two words with similar embeddings will predict similar contexts => semantically similar
. Word embedding is a form of self-supervised learningEmploy negative sampling to improve
training efficiency

Use SGD to optimize vector representations

Word embedding applications & evaluations
. Word similarity

. Word analogy
. Use as input features to downstream tasks

il UNIVERSITYo VIRGINIA

Limitations: Word2Vec

* Limited Context Window:
. only considers a fixed-size context window when generating embeddings
. cannot effectively capture long-range dependencies (e.g. words that appear far apart)

e Static Embeddings:
. the embeddings generated by Word2Vec are static (regardless of the context)
. polysemy can have different meanings depending on specific context

* Not Capturing Word Order Information:
. focuses only on co-occurrence within the context window
. ignores the sequential structure of language

i UNIVERSITY,VIRGINIA

Agenda: Language Model Architecture

e Transformer Architecture

36/59

il UNIVERSITYo VIRGINIA

Transformer Paper

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | FLukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Paper: https://arxiv.org/pdf/1706.03762

https://arxiv.org/pdf/1706.03762

il UNIVERSITYo VIRGINIA
Transformer: Overview
* Transformer is a specific kind of sequence modeling architecture (based on DNNs)

e Use attention to replace recurrent operations in RNNs

* The most important architecture for language modeling (almost all LLMs are based on
Transformers)!

38/59

il UNIVERSITYo VIRGINIA

Transformer vs. RNN

Transformer
RNN (self-attention computations)
(recurrent computations) Nesdi iokan |0?g n thanks all
))
Next word long and thanks for all Iﬁgg:ﬁr?: [.o .og ts Iog Iog’ [Iog
| | | | | eaa® (U7 W)\ \\9/
Loss [=10g fions] (10 Jand [E1ogdmans] EI0gTtor | [=10gJan] p 'I 4
d =
I?I
Softmax over [.]ln, i wli ol o e
Vocabulary C’_L‘D Trgr:z;?cl:fr:er $
RNN h Blocks [
=i =) =)=\
Input '] 7] e
EmbeZdings @ @ $ @ @ o X4
So long and thanks for Inpu‘t e
Encoding /_E_\ /_IE /E\ /E\ /E\
Input tokens S Iong and thanks for

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

il UNIVERSITYo VIRGINIA

Transformer: Motivation

e Parallel token processing
. RNN: process one token at a time (computation for each token depends on previous ones)
. Transformer: process all tokens in a sequence in parallel

* Long-term dependencies
. RNN: bad at capturing distant relating tokens (vanishing gradients)
. Transformer: directly access any token in the sequence, regardless of its position

* Bidirectionality
. RNN: can only model sequences in one direction
. Transformer: inherently allow bidirectional sequence modeling via attention

i UNIVERSITY,VIRGINIA

Transformer Layer

Each Transformer layer contains the following important components:
. Self-attention
. Feedforward network
. Residual connections + layer norm

A
o

Add & Normalize

Transformer layer C
4

POSITIONAL
ENCODING
x+ (I x [

Figure source: https://jalammar.github.io/illustrated-transformer/

41/59

https://jalammar.github.io/illustrated-transformer/

i UNIVERSITYs VIRGINIA

Self-Attention: Intuition

Attention: weigh the importance of different words in a sequence when processing a

specific word

“When I'm looking at this word, which other words should | pay attention to in order to
understand it better?”

Self-attention: each word attends to other words in the same sequence

Example: “The chicken didn’t cross the road because it was too tired”

Suppose we are learning attention for the word “it”

With self-attention, “it” can decide which other words in the sentence it should focus on to
better understand its meaning

Might assign high attention to “chicken” (the subject) & “road” (another noun)

Might assign less attention to words like “the” or “didn’t”

i UNIVERSITY,VIRGINIA

Self-Attention: Example

Derive the center word representation as a
weighted sum of context representations!

Center word representation Context word representation

v, A

a; — E QG , E OG5 =1

acjea: : .’EjE:B :
v v

Attention score i — j, summed to 1

Context word (key) Center word (query)

The The
_ chicken
didn’t didn’t
Cross Cross
the the
road road
because because
it Current word = “it”
was was

too too
tired tired

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 43/59

https://web.stanford.edu/~jurafsky/slp3/9.pdf

il UNIVERSITYs VIRGINIA

Self-Attention: Attention Score Computation

* Attention score is given by the softmax function over vector dot product

a; = E Qi Ly, E Qg5 = 1

TjExT TjEx

Q5 = Softmax(a:i . a:j)

. e,
. .
. .
. .y
.
. .
. .
. ey,
. N

Center word (query) representation Context word (key) representation

* Why use two copies of word representations for attention computation?

We want to reflect the different roles a word plays (as the target word being compared to
others, or as the context word being compared to the target word)

If using the same copy of representations for attention calculation, a word will (almost)
always attend to itself heavily due to high dot product with itself!

44/59

il UNIVERSITYs VIRGINIA

Self-Attention: Query, Key, and Value

Each word in self-attention is represented by three different vectors
. Allow the model to flexibly capture different types of relationships between tokens

Query (Q):

. Represent the current word seeking information about

Key (K):
. Represent the reference (context) against which the query is compared

Value (V):
. Represent the actual content associated with each token to be aggregated as final output

45/59

i UNIVERSITY,VIRGINIA

Self-Attention: Query, Key, and Value

Each self-attention module has three weight matrices applied to the input word vector to
obtain the three copies of representations

— O query representation

q, = x;W¢
we
Input word representation

key representation

value representation

46/59

il UNIVERSITYo VIRGINIA

Self-Attention: Overall Computation

* Input: single word vector of each word &;
* Compute Q, K, V representations for each word:
q; = iUz'WQ ki, = CL‘Z-WK vV, = wiWV

 Compute attention scores with Q and K
. The dot product of two vectors usually has an expected magnitude proportional to v/d
. Divide the attention score byv/d to avoid extremely large values in softmax function

Q5 = Softmax <qz—‘7)
Vd Dimensionality of g and k

* Sum the value vectors weighted by attention scores

a; = E Ckij’vj

Tr;cx

i UNIVERSITY,VIRGINIA

Self-Attention: lllustration

e Example: an input sequence with three words [xq, x5, X3] 8 Output of self-attention

* Suppose we want to compute the self-attention for x5 @

Sum the weighted value vectors

Obtain attention scores via softmax aj; ,
N ©) "))
Divide the dot product by X 7$
vector dimension Jdi Jai Ve
) Compare x3’s query with
N the keys of all words
—) — 4
Compute query, key, value @@ @@ @@
X1 X2 X3

~J0 x, ~J0 x, 6~

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 48/59

https://web.stanford.edu/~jurafsky/slp3/9.pdf

il UNIVERSITYs VIRGINIA
Multi-Head Self-Attention

e Transformers use multiple attention heads for each self-attention module

* Intuition:
. Each head might attend to the context for different purposes (e.g., particular kinds of
patterns in the context)

. Heads might be specialized to represent different linguistic relationships
Multi-Head Attention

Concat
ﬁ

Scaled Dot-Product
Attention

TN 1 i
|
ﬁear Linear Linear

i i

Concatenate the outputs of all heads

I
L

yh h attention heads are computed separately

V K Q
Figure source: https://arxiv.org/pdf/1706.03762 49/59

https://arxiv.org/pdf/1706.03762

i UNIVERSITYo VIRGINIA
Multi-Head Self-Attention Variants

* Multi-query attention (Fast Transformer Decoding: One Write-Head is All You Need):
share keys and values across all attention heads

* Grouped-query attention (GQA: Training Generalized Multi-Query Transformer Models
from Multi-Head Checkpoints): share keys and values within groups of heads

Multi-head Grouped-query Multi-query

e o —

Values

—J
—

) |
)

Keys

Queries

—

—
—

=
r— — — . e f— — . - JR—

J |
J |

—
—

J |

J |

—J - S
— — —

,,,,,,,,

,,,,,,,,

00| angnonan | oognain

Used in latest LLMs (e.g., Llama3)
Figure source: https://arxiv.org/pdf/2305.13245 50/59

https://arxiv.org/pdf/1911.02150
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245
https://arxiv.org/pdf/2305.13245

il UNIVERSITYo VIRGINIA

Parallel Computation of QKV

Self-attention computation performed for each token is independent of other tokens

Easily parallelize the entire computation, taking advantage of the efficient matrix
multiplication capability of GPUs

Process an input sequence with N words in parallel

Compute QKV for one word: q; = iBiWQ k;, = iBiWK v; = :BiWV € Rd

. .
.......
" .
L .
. .
......
L .
.
......

a v &
— I

X=| 7

i UNIVERSITY,VIRGINIA

Parallel Computation of Attention

Attention computation can also be written in matrix form

Compute attention for one word: a; = Softmax (qZ—J -V

S

-
Compute attention for one N words: A = Softmax (Q > V N

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

Attention matrix

q1-ki

q1-k2

qi-k3

qi-k4

q2-k1

q2-k2

q2:k3

q2-k4

q3-k1

q3-k2

q3-k3

q3-k4

q4-k1

q4-k2

q4-k3

q4-kd

N

52/59

https://web.stanford.edu/~jurafsky/slp3/9.pdf

il UNIVERSITYs VIRGINIA

Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Bidirectional self-attention:
. Each position to attend to all other positions in the input sequence
. Transformers with bidirectional self-attention are called Transformer encoders (e.g., BERT)
. Use case: natural language understanding (NLU) where the entire input is available at once,
such as text classification & named entity recognition

hsa hp he every token attends to
. all tokens
\ //’:\\\:\\ o .
AN AN Bidirectional
/o E LN Self-Attention

¥) R Y
S S

(A~ e)e]--

ik UNIVERSITYs VIRGINIA

Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Unidirectional (or causal) self-attention:
. Each position can only attend to earlier positions in the sequence (including itself).
. Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
. Use case: natural language generation (NLG) where the model generates

output sequentially
upper-triangle portion set to -inf

hs hp hco every tok.en attends to qi-k1| —o0 | —o0 | —o0
A T A e its previous tokens
1‘ N q2:k1(g2:k2| —oc0 | —oc0
S Unidirectional N
’/ : Self-Attention q3-k1|q3-k2|q3-k3| —oo
A
I
(A][B][c } e q4-k1|g4-k2(q4-k3|q4-k4

il UNIVERSITYo VIRGINIA

Position Encoding

* Motivation: inject positional information to input vectors
q;, = wiWQ k;, = aziWK v; = miWV c Rd

a; = Softmax q; kj\ v, When x is W(?I’-d empeddlng, _q and k do
\/E not have positional information!

* How to know the word positions in the sequence? Use position encoding!

Transformer Block

L

bill

X = Composite
Embeddings
(word + position)

<P
Word m
Embeddings 8

Position
Embeddings

Janet WI|| back t

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

https://web.stanford.edu/~jurafsky/slp3/9.pdf

UNIVERSITYs VIRGINIA

Position Encoding Methods

e Absolute position encoding (the original Transformer paper)

Learn position embeddings for each position
Not generalize well to sequences longer than those seen in training

* Relative position encoding (Self-Attention with Relative Position Representations)

Encode the relative distance between words rather than their absolute positions
Generalize better to sequences of different lengths

* Rotary position embedding (RoFormer: Enhanced Transformer with Rotary Position
Embedding)

Apply a rotation matrix to the word embeddings based on their positions
Incorporate both absolute and relative positions

Generalize effectively to longer sequences

Widely-used in latest LLMs

56/59

https://arxiv.org/pdf/1803.02155
https://arxiv.org/pdf/2104.09864
https://arxiv.org/pdf/2104.09864

ik UNIVERSITYs VIRGINIA

Summary: Transformer

* Motivation: weigh the importance of different words in a sequence when processing a
specific word

* Implementation: represent each word with three vectors:
. Query: the current word that seeks information

. Key: context word to be retrieved information from
. Value: semantic content to be aggregated as the new word representation

e Allow parallel computation of all input words
e Usually deployed with multiple heads to capture various linguistic relationships

* Can be either unidirectional (only attend to previous words) or bidirectional (attend to
all words)

* Need to use position encodings to inject positional information

il UNIVERSITYs VIRGINIA

Limitations: Transformer

* Quadratic Complexity wrt Sequence Length:
. self-attention has a quadratically complexity with the sequence length
. processing long sequences is extremely compute & memory expensive

* Interpretability & Explainability:
. complex architecture with many layers and attention heads (totaling billions of parameters)
. difficult to understand how they arrive at their predictions & debug

e Positional Encoding:
. the original Transformer paper adopts manually-defined position encodings — likely
suboptimal
. follow-up works propose advance position encoding methods to enhance expressiveness

Thank You!

Yu Meng
University of Virginia
yumeng5@virginia.edu

Iz

IVERSITY
7VIRGINIA

mailto:yumeng5@virginia.edu

