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(Recap) Course Format & Grading: Paper Presentation (30%)

Starting from next Monday (1/27), each lecture will be presented by a group of 1 or 2
students

* Every group presents one lecture (3 papers)

* Deadline: email your slides to the instructor & TA 48 hours before the lecture (If
presenting next Monday, you’ll need to submit your slides by this Saturday 2pm)
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(Recap) Course Format & Grading: Participation (20%)

* Starting from next Monday (1/27), everyone is required to complete two mini-
assignments

* Pre-lecture question: read the 3 papers to be introduced in the lecture, and submit a
guestion you have when you read them

* Post-lecture feedback: provide feedback to the presenters after the lecture
* We'll release the Google Forms later this week (Canvas announcement)

* Deadlines: pre-lecture questions are due one day before the lecture (e.g., For Monday
lectures, you need to submit the question by Sunday 11:59 pm); post-lecture feedback
is due each Friday (both Monday & Wednesday feedback is due Friday 11:59 pm)

e The Google Forms will be closed once the deadline is passed!
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(Recap) Course Format & Grading: Project (50%)

* Complete a research project, present your results, and submit a project report

* Workinateam of 1 or 2 (a larger team size requires prior approval from the
instructor) — may or may not be the same team as your presentation group

* (Type 1) A comprehensive survey report: carefully examine and summarize existing
literature on a topic covered in this course; provide detailed and insightful discussions
on the unresolved issues, challenges, and potential future opportunities within the
chosen topic

* (Type 2) A hands-on project: not constrained to the course topics but must be
centered around NLP; doesn’t have to involve large language models (e.g., train or
analyze smaller-scale language models for specific tasks); eligible for extra credits if
publishable

*  Project proposal: 5% (ddl: 2/5); Mid-term report: 10% (ddl: 3/10); Final presentation
(ddl: 4/15) and final report: 35% (ddl: 5/6)
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(Recap) Overview of Course Contents

* Introduction to Language Models

Language Model Architecture

Language Model Pretraining & Fine-Tuning
In-Context Learning

Scaling and Emergent Ability

* Reasoning with Language Models

Chain-of-Thought Generation
Inference-Time Scaling

* Knowledge, Factuality and Efficiency

Parametric Knowledge in Language Models
Retrieval-Augmented Language Generation (RAG)
Long-Context Language Models

Efficiency

Language Model Post-Training

- Instruction Tuning

. Reinforcement Learning from Human Feedback (RLHF)
Language Agents

. Language Agent Basics

. Language Models for Code

. Multimodal Language Models

Ethical Considerations of Language Models

. Security and Jailbreaking
. Bias and Calibration
. Privacy and Legal Issues

Looking Forward
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(Recap) Vector Semantics

Represent a word as a point in a multi-dimensional semantic space

A desirable vector semantic space: words with similar meanings are nearby in space

not good
bad
to by s dislike whist
that now incredibly bad
are worse
a i you
than with is
very good incredibly good
amazing fantastic
terrific nice wonderful

good

2D visualization of a desirable high-dimensional vector semantic space

Figure source: https://web.stanford.edu/~jurafsky/slp3/6.pdf
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(Recap) Word2Vec Paper

Distributed Representations of Words and Phrases
and their Compositionality

Tomas Mikolov Ilya Sutskever Kai Chen
Google Inc. Google Inc. Google Inc.
Mountain View Mountain View Mountain View
mikolov@google.com ilyasu@google.com kai@google.com
Greg Corrado Jeffrey Dean
Google Inc. Google Inc.
Mountain View Mountain View
gcorrado@google.com jeff@google.com

Paper: https://arxiv.org/pdf/1310.4546
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(Recap) Distributional Hypothesis

Words that occur in similar contexts tend to have similar meanings
A word’s meaning is largely defined by the company it keeps (its context)

Example: suppose we don’t know the meaning of “Ong choy” but see the following:
. Ong choy is delicious sautéed with garlic
. Ong choy is superb over rice
. ... ong choy leaves with salty sauces

And we’ve seen the following contexts:

. ... spinach sautéed with garlic over rice
. ... chard stems and leaves are delicious
. ... collard greens and other salty leafy greens

Ong choy = water spinach!

Example source: https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf 8/58



https://web.stanford.edu/~jurafsky/slp3/slides/vectorsemantics2024.pdf

'A‘

il UNIVERSITYof VIRGINIA

(Recap) Learning Word Embeddings

 Assume a large text collection (e.g., Wikipedia)
* Hope to learn similar word embeddings for words occurring in similar contexts
* Construct a prediction task: use a center word’s embedding to predict its contexts!

* Intuition: If two words have similar embeddings, they will predict similar contexts,
thus being semantically similar!

Predicted contexts Predicted contexts

sautéed sautéed

/v garlic /v garlic
Vong choy i: rice Uspinach i: rice
salty

leaves leaves

salty
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(Recap) Word2Vec Parameterized Objective

*  Word2Vec objective: max H pe(clw)
(w,c)eD

* Assume the log probability (i.e., logit) is proportional to vector dot product
log pe(clw) ox v, - vy

* The final probability distribution is given by the softmax function:

polchw) = <P Pu) 3 polelw) =1

Clelvl eXp('Ucl * vw) c,€|v|

* Word2Vec objective (log-scale):

max Y Togpo(clu) = Y (ve-vu—log 3 explo -va)

(w,c)eD (w,c)eD ' €[V
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(Recap) Summary: Word2Vec

Distributional hypothesis
. Words that occur in similar contexts tend to have similar meanings
. Infer semantic similarity based on context similarity

Word embeddings
. Construct a prediction task: use a center word’s embedding to predict its contexts
. Two words with similar embeddings will predict similar contexts => semantically similar
. Word embedding is a form of self-supervised learningEmploy negative sampling to improve
training efficiency

Use SGD to optimize vector representations

Word embedding applications & evaluations
. Word similarity

. Word analogy
. Use as input features to downstream tasks
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(Recap) Limitations: Word2Vec

* Limited Context Window:
. only considers a fixed-size context window when generating embeddings
. cannot effectively capture long-range dependencies (e.g. words that appear far apart)

e  Static Embeddings:
. the embeddings generated by Word2Vec are static (regardless of the context)
. polysemy can have different meanings depending on specific context

* Not Capturing Word Order Information:
. focuses only on co-occurrence within the context window
. ignores the sequential structure of language
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(Recap) Transformer Paper

Attention Is All You Need

Ashish Vaswani* Noam Shazeer* Niki Parmar* Jakob Uszkoreit*
Google Brain Google Brain Google Research Google Research
avaswani@google.com noam@google.com nikip@google.com usz@google.com

Llion Jones* Aidan N. Gomez* | FLukasz Kaiser*
Google Research University of Toronto Google Brain
1lion@google.com aidan@cs.toronto.edu lukaszkaiser@google.com

Illia Polosukhin* *
illia.polosukhin@gmail.com

Paper: https://arxiv.org/pdf/1706.03762
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(Recap) Transformer Layer

Each Transformer layer contains the following important components:
. Self-attention
. Feedforward network
. Residual connections + layer norm

A
o

Add & Normalize

Transformer layer C
4

POSITIONAL
ENCODING
x+ (I x [

Figure source: https://jalammar.github.io/illustrated-transformer/
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(Recap) Self-Attention: Intuition

Attention: weigh the importance of different words in a sequence when processing a

specific word

“When I'm looking at this word, which other words should | pay attention to in order to
understand it better?”

Self-attention: each word attends to other words in the same sequence

Example: “The chicken didn’t cross the road because it was too tired”

Suppose we are learning attention for the word “it”

With self-attention, “it” can decide which other words in the sentence it should focus on to
better understand its meaning

Might assign high attention to “chicken” (the subject) & “road” (another noun)

Might assign less attention to words like “the” or “didn’t”
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Self-Attention: Example

Derive the center word representation as a
weighted sum of context representations!

Center word representation Context word representation

v, A

a; — E QG , E OG5 =1

acjea: : .’EjE:B :
v v

Attention score i — j, summed to 1

Context word (key) Center word (query)

The The
_ chicken
didn’t didn’t
Cross Cross
the the
road road
because because
it Current word = “it”
was was

too too
tired tired

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 16/58
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Self-Attention: Attention Score Computation

* Attention score is given by the softmax function over vector dot product

a; = E Qi Ly, E Qg5 = 1

TjExT TjEx

Q5 = Softmax(a:i . a:j)

. e,
. .
. .
. .y
.
. .
. .
. ey,
. N

Center word (query) representation Context word (key) representation

*  Why use two copies of word representations for attention computation?

We want to reflect the different roles a word plays (as the target word being compared to
others, or as the context word being compared to the target word)

If using the same copy of representations for attention calculation, a word will (almost)
always attend to itself heavily due to high dot product with itself!
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Self-Attention: Query, Key, and Value

Each word in self-attention is represented by three different vectors
. Allow the model to flexibly capture different types of relationships between tokens

Query (Q):

. Represent the current word seeking information about

Key (K):
. Represent the reference (context) against which the query is compared

Value (V):
. Represent the actual content associated with each token to be aggregated as final output

18/58
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Self-Attention: Query, Key, and Value

Each self-attention module has three weight matrices applied to the input word vector to
obtain the three copies of representations

— O query representation

q, = x;W¢
we
Input word representation

key representation

value representation
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Self-Attention: Overall Computation

* Input: single word vector of each word &;
* Compute Q, K, V representations for each word:
q; = iUz'WQ ki, = CL‘Z-WK vV, = wiWV

 Compute attention scores with Q and K
. The dot product of two vectors usually has an expected magnitude proportional to v/d
. Divide the attention score byv/d to avoid extremely large values in softmax function

Q5 = Softmax <qz—‘7)
Vd Dimensionality of g and k

* Sum the value vectors weighted by attention scores

a; = E Ckij’vj

Tr;cx
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Self-Attention: lllustration

e Example: an input sequence with three words [xq, x5, X3] 8 Output of self-attention

* Suppose we want to compute the self-attention for x5 @

Sum the weighted value vectors

Obtain attention scores via softmax aj; ,
N © ) "))
Divide the dot product by X 7$
vector dimension Jdi Jai Ve
) Compare x3’s query with
N the keys of all words
— ) — 4
Compute query, key, value @@ @@ @@
X1 X2 X3

~J0 x, ~J0  x, 6~

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf 21/58
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il UNIVERSITYs VIRGINIA
Multi-Head Self-Attention

e Transformers use multiple attention heads for each self-attention module

* Intuition:
. Each head might attend to the context for different purposes (e.g., particular kinds of
patterns in the context)

. Heads might be specialized to represent different linguistic relationships
Multi-Head Attention

Concat
ﬁ

Scaled Dot-Product
Attention

TN 1 i
|
ﬁear Linear Linear

i i

Concatenate the outputs of all heads

I
L

yh h attention heads are computed separately

V K Q
Figure source: https://arxiv.org/pdf/1706.03762 22/58
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Multi-Head Self-Attention Variants

*  Multi-query attention (Fast Transformer Decoding: One Write-Head is All You Need):
share keys and values across all attention heads

* Grouped-query attention (GQA: Training Generalized Multi-Query Transformer Models
from Multi-Head Checkpoints): share keys and values within groups of heads

Multi-head Grouped-query Multi-query

e o —

Values

—J
—

) |
)

Keys

Queries

—

—
—

=
r— — — . e f— — . - JR—

J |
J |

—
—

J |

J |

—J - S
— — —

,,,,,,,,

,,,,,,,,

00| angnonan | oognain

Used in latest LLMs (e.g., Llama3)
Figure source: https://arxiv.org/pdf/2305.13245 23/58
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Parallel Computation of QKV

Self-attention computation performed for each token is independent of other tokens

Easily parallelize the entire computation, taking advantage of the efficient matrix
multiplication capability of GPUs

Process an input sequence with N words in parallel

Compute QKV for one word: q; = iBiWQ k;, = iBiWK v; = :BiWV € Rd

. .
.......
" .
L .
. .
......
L .
.
......

a v &
— I

X=| 7
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Parallel Computation of Attention

Attention computation can also be written in matrix form

Compute attention for one word:  a; = Softmax (qZ—J -V

S

-
Compute attention for one N words: A = Softmax (Q > V N

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

Attention matrix

q1-ki

q1-k2

qi-k3

qi-k4

q2-k1

q2-k2

q2:k3

q2-k4

q3-k1

q3-k2

q3-k3

q3-k4

q4-k1

q4-k2

q4-k3

q4-kd

N
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Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Bidirectional self-attention:
. Each position to attend to all other positions in the input sequence
. Transformers with bidirectional self-attention are called Transformer encoders (e.g., BERT)
. Use case: natural language understanding (NLU) where the entire input is available at once,
such as text classification & named entity recognition

hsa hp he every token attends to
. all tokens
\ //’:\\\:\\ o .
AN AN Bidirectional
/o E LN Self-Attention

¥ ) R Y
S S

(A~ e )e]--
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Bidirectional vs. Unidirectional Self-Attention

e Self-attention can capture different context dependencies

* Unidirectional (or causal) self-attention:
. Each position can only attend to earlier positions in the sequence (including itself).
. Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
. Use case: natural language generation (NLG) where the model generates

output sequentially
upper-triangle portion set to -inf

hs hp hco every tok.en attends to qi-k1| —o0 | —o0 | —o0
A T A e its previous tokens
1‘ N q2:k1(g2:k2| —oc0 | —oc0
S Unidirectional N
’/ : Self-Attention q3-k1|q3-k2|q3-k3| —oo
A
I
( A ][ B ][ c } e q4-k1|g4-k2(q4-k3|q4-k4
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Position Encoding

*  Motivation: inject positional information to input vectors
q;, = wiWQ k;, = aziWK v; = miWV c Rd

a; = Softmax q; kj\ v, When x is W(?I’-d empeddlng, _q and k do
\/E not have positional information!

* How to know the word positions in the sequence? Use position encoding!

Transformer Block

L

bill

X = Composite
Embeddings
(word + position)

<P
Word m
Embeddings 8

Position
Embeddings

Janet WI|| back t

Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf
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Position Encoding Methods

e Absolute position encoding (the original Transformer paper)

Learn position embeddings for each position
Not generalize well to sequences longer than those seen in training

* Relative position encoding (Self-Attention with Relative Position Representations)

Encode the relative distance between words rather than their absolute positions
Generalize better to sequences of different lengths

* Rotary position embedding (RoFormer: Enhanced Transformer with Rotary Position
Embedding)

Apply a rotation matrix to the word embeddings based on their positions
Incorporate both absolute and relative positions

Generalize effectively to longer sequences

Widely-used in latest LLMs
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Summary: Transformer

* Motivation: weigh the importance of different words in a sequence when processing a
specific word

* Implementation: represent each word with three vectors:
. Query: the current word that seeks information

. Key: context word to be retrieved information from
. Value: semantic content to be aggregated as the new word representation

e Allow parallel computation of all input words
e Usually deployed with multiple heads to capture various linguistic relationships

* Can be either unidirectional (only attend to previous words) or bidirectional (attend to
all words)

* Need to use position encodings to inject positional information
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Limitations: Transformer

* Quadratic Complexity wrt Sequence Length:
. self-attention has a quadratically complexity with the sequence length
. processing long sequences is extremely compute & memory expensive

* Interpretability & Explainability:
. complex architecture with many layers and attention heads (totaling billions of parameters)
. difficult to understand how they arrive at their predictions & debug

e Positional Encoding:
. the original Transformer paper adopts manually-defined position encodings — likely
suboptimal
. follow-up works propose advance position encoding methods to enhance expressiveness



i UNIVERSITY,VIRGINIA

Agenda: Language Model Pretraining & Fine-Tuning

Background: Pretraining & Fine-Tuning

32/58
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Pretraining: Motivation

* There are abundant text data on the web, with rich information of linguistic features
and knowledge about the world

e Learning from these easy-to-obtain data greatly benefits various downstream tasks

;*‘W \
Q

Wy arXiv @ reddit

WIKIPEDIA
The Free Encyclopedia

Che
New 1lork Gﬂlb = stackoverflow
Cimes
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Pretraining: Multi-Task Learning

In my free time, | like to {run, banana} (Grammar)
| went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)

The capital of Denmark is {Copenhagen, London} (World knowledge)

| was engaged and on the edge of my seat the whole time. The movie was {good, bad}
(Sentiment analysis)

The word for “pretty” in Spanish is {bonita, hola} (Translation)
3+8+4={15, 11} (Math)

Examples from: https://docs.google.com/presentation/d/1hQUd3pF8 2Gr20bc89LKimHLODIH-
uof9MOyYFVd3FA4/edit#tslide=id.g28e2e9aa709_0_1
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Pretraining: Self-Supervised Learning
* Pretraining is a form of self-supervised learning

*  Make a part of the input unknown to the model

* Use other parts of the input to reconstruct/predict the unknown part

(L
Mask/Corrupt ( *@:| Reconstruct

> 'L Pretrained Model 'J

Original data Corrupted data Original data

v

No Human Supervision Needed!
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Pretraining + Fine-Tuning

*  Pretraining: trained with pretext tasks on large-scale text corpora

*  Fine-tuning (also called post-training): adjust the pretrained model’s parameters with
fine-tuning data

* Fine-tuning data can have different forms:
. Task-specific labeled data (e.g., sentiment classification, named entity recognition)
. (Multi-turn) dialogue data (i.e., instruction tuning)

Pretraining Data

Pretrained LM Fine-tuned LM

Figure source: https://web.stanford.edu/~jurafsky/slp3/10.pdf
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Transformer for Pretraining

* Transformer is the common backbone architecture for language model pretraining

* Efficiency: Transformer processes all tokens in a sequence simultaneously — fast and
efficient to train, especially on large datasets

e  Scalability: Transformer architectures have shown impressive scaling properties, with
performance improving as model size and training data increase (more on this later!)

* Versatility: Transformer can be adapted for various tasks and modalities beyond just
text, including vision, audio, and other multimodal applications
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Transformer Architectures

e Based on the type of self-attention, Transformer can be instantiated as
. Encoder: Bidirectional self-attention
. Decoder: Unidirectional self-attention

. Encoder-decoder: Use both encoder and decoder Y e (e
ha hp hco every token attends to
A . all tokens
a2:k1 |q2k2 |q2-k3 |q2-k4
= = Bidirectional N
idirectiona
: q3-k1 | g3-k2 | q3-k3 |q3-k4
(&( Add & Normalize ) Encoder Self-Attention
' 4 [
. ( Feed Forward ) ( Feed Forward ) Gtk gé2 |qdtial| gé-ka
REPLTTrEE | SEETTTISRI PP TTY ) (
,»( Add & Normalize ) N
' [y ‘ [y every token attends to qi+ki| oo | —c0 | —oo
Q ( Self-Attention ) its previous tokens
""""" L SXPIITIIA LI ERTEY 2 Decoder q2-k1|q2-k2| —oo | —oo
) ® Unidirectional N
- v Self-Attention q3-k1|g3-k2|q3-k3| —c0
} q4-k1|g4-k2(q4-k3|q4-k4
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Applications of Transformer Architectures

* Encoder (e.g., BERT):
. Capture bidirectional context to learn each token representations
. Suitable for natural language understanding (NLU) tasks

* Decoder (modern large language models, e.g., GPT):
. Use prior context to predict the next token (conventional language modeling)
. Suitable for natural language generation (NLG) tasks
. Can also be used for NLU tasks by generating the class labels as tokens

* Encoder-decoder (e.g., BART, T5):
. Use the encoder to process input, and use the decoder to generate outputs
. Can conduct all tasks that encoders/decoders can do

NLU:
Text classification
Named entity recognition
Relation extraction
Sentiment analysis

NLG:
Text summarization
Machine translation
Dialogue system
Question answering
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Agenda: Language Model Pretraining & Fine-Tuning

* Decoder Pretraining
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GPT & Llama

Language Models are Unsupervised Multitask Learners

Alec Radford *' Jeffrey Wu *! Rewon Child! David Luan' Dario Amodei **' Ilya Sutskever ™!

Paper: https://cdn.openai.com/better-language-models/language _models _are unsupervised multitask learners.pdf

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet
Marie-Anne Lachaux, Timothee Lacroix, Baptiste Roziere, Naman Goyal
Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin
Edouard Grave; Guillaume Lample*

Paper: https://arxiv.org/pdf/2302.13971
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https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
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P

il UNIVERSITYf VIRGINIA

Decoder Pretraining

* Decoder architecture is the prominent choice in large language models
* Pretraining decoders is first introduced in GPT (generative pretraining) models

* Follow the standard language modeling (cross-entropy) objective

N
1
L£(0) = N Zlogpe(%\l'l,iﬁ% ey Ti—1)

=1
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GPT Series

 GPT-1(2018): 12 layers, 117M parameters, trained in ~1 week
* GPT-2(2019): 48 layers, 1.5B parameters, trained in ~1 month
 GPT-3(2020): 96 layers, 175B parameters, trained in several months

Model ;
Parameter N
..
L 4
*
® © o .

(175B) ,*°

GPT-1 GPT-2 et
(OlB) (1.53)--‘- -‘--lllll
2018 2019 2020 2023

Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf

(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are_unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf 43/58
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Llama Series
 Llama-1(2023/02): 7B/13B/33B/65B

 Llama-2 (2023/07): 7B/13B/70B
 Llama-3 (3.1 & 3.2) (2024/07): 1B/3B/8B/70B/405B w/ multi-modality

2.2
—— LLaMA 7B

2.1 —— LLaMA 13B
0 2.0 —— LLaMA 33B
9 Lo —— LLaMA 65B
o™ Larger models learn
.% 1.8 pretraining data better
= 1.7

1.61

1.5

0 200 400 600 800 1000 1200 1400
Billion of tokens
Papers: (Llama-1) https://arxiv.org/pdf/2302.13971

(Llama-2) https://arxiv.org/pdf/2307.09288
(Llama-3) https://arxiv.org/pdf/2407.21783 44/58



https://arxiv.org/pdf/2302.13971
https://arxiv.org/pdf/2307.09288
https://arxiv.org/pdf/2407.21783

i UNIVERSITY,VIRGINIA

Agenda: Language Model Pretraining & Fine-Tuning

* Encoder Pretraining
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BERT

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google Al Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Paper: https://arxiv.org/pdf/1810.04805.pdf
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Encoder Pretraining: BERT

BERT pretrains encoder models with bidirectionality

Masked language modeling (MLM): With 15% words randomly masked, the model
learns bidirectional contextual information to predict the masked words

long thanks the

CE Loss

LM Head with Softmax
over Vocabulary

ZIT 231 ZST Z6T ng

2 4 7
[ Bidirectional Transformer Encoder j

= BHEEMOHe

So |[mask] and | [mask] for all apricot fish
So I long I and ! thanks I for all the fish

Figure source: https://web.stanford.edu/~jurafsky/slp3/11.pdf 47/58



https://web.stanford.edu/~jurafsky/slp3/11.pdf

il UNIVERSITYs VIRGINIA
Encoder Pretraining: BERT

* Next sentence prediction (NSP): the model is presented with pairs of sentences

* The model is trained to predict whether each pair consists of an actual pair of adjacent
sentences from the training corpus or a pair of unrelated sentence

e i {34 834 e

Figure source: https://web.stanford.edu/~jurafsky/slp3/11.pdf 48/58
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BERT Fine-Tuning

*  Fine-tuning pretrained BERT models takes different forms depending on task types

*  Usually replace the LM head with a linear layer fine-tuned on task-specific data

Class Class

Label Label
* &
c n L m L e ) (]
BERT BERT
E[CLS] E, E, Ey IEICLSI E, | Ey E[SEP]| E/ Ey
~ i r ——r T T
o 1ot |12 | =) - (e (%)
I \_'_1 \_'_l
l
Single Sentence Sentence 1 Sentence 2

Single sequence classification Sequence-pair classification
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BERT vs. GPT on NLU tasks

*  BERT outperforms GPT-1 on a set of NLU tasks

* Encoders capture bidirectional contexts — build a richer understanding of the text by
looking at both preceding and following words

* Are encoder models still better than state-of-the-art (large) decoder models?
. LLMs can be as good as (if not better than) encoders model on NLU: Can ChatGPT
Understand Too?
. The sheer model size + massive amount of pretraining data compensate for LLMs’
unidirectional processing

System MNLI-(m/mm) QQP QNLI SST-2 CoLA STS-B  MRPC RTE  Average
392k 363k 108k 67k 8.5k 5.7k 3.5k 2.5k -
Pre-OpenAl SOTA 80.6/80.1 66.1 82.3 93.2 35.0 81.0 86.0 61.7 74.0
BiLSTM+ELMo+Attn 76.4/76.1 64.8 79.8 90.4 36.0 733 84.9 56.8 71.0
OpenAI GPT 82.1/81.4 70.3 87.4 91.3 454 80.0 82.3 56.0 75.1
BERTgAsE 84.6/83.4 71.2 90.5 93.5 52:1 85.8 88.9 66.4 79.6

BERTLArGE 86.7/85.9 72.1 92.7 94.9 60.5 86.5 89.3 70.1 82.1
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Agenda: Language Model Pretraining & Fine-Tuning

Encoder-Decoder Pretraining
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BART & T5

BART: Denoising Sequence-to-Sequence Pre-training for Natural
Language Generation, Translation, and Comprehension

Mike Lewis*, Yinhan Liu*, Naman Goyal*, Marjan Ghazvininejad,
Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer
Facebook Al

Paper: https://arxiv.org/pdf/1910.13461

Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer

Colin Raffel* CRAFFEL@QGMAIL.COM
Noam Shazeer* NOAM@GOOGLE.COM
Adam Roberts* ADAROB@GOOGLE.COM
Katherine Lee* KATHERINELEEQGOOGLE.COM
Sharan Narang SHARANNARANG@GOOGLE.COM
Michael Matena MMATENA@GOOGLE.COM
Yanqi Zhou YANQIZQGOOGLE.COM
‘Wei Li MWEILIQGOOGLE.COM
Peter J. Liu PETERJLIUQGOOGLE.COM

Paper: https://arxiv.org/pdf/1910.10683
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Encoder-Decoder Pretraining: BART

* Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations...)
to input sequences and train the model to recover the original sequences
*  Fine-Tuning:
. For NLU tasks: Feed the same input into the encoder and decoder, and use the final decoder

token for classification
. For NLG tasks: The encoder takes the input sequence, and the decoder generates outputs

autoregressively

ABCDE
AA XA DE.ABC. C.DE.AB
C Bidirectional |:> Autoregressive Token Masking  Sentence Permutation Document Rotation

Encoder Decoder ‘
TrriE. TR D » G « GEED
A_B_E

<s>ABCD Token Deletion Text Infilling
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BART Performance

* Comparable to encoders on NLU tasks

* Good performance on NLG tasks

SQuAD 1.1 SQuAD2.0 MNLI SST QQP QNLI STS-B RTE MRPC CoLA

EM/F1 EM/F1 m/mm Acc  Acc Acc Acc Acc Acc Mcc
BERT 84.1/90.9 79.0/81.8 86.6/- 932 913 92.3 90.0 70.4 88.0 60.6
UniLM -/- 80.5/83.4 87.0/85.9 94.5 - 92.7 - 70.9 - 61.1
XL Net 89.0/94.5 86.1/88.8 89.8/- 95.6 91.8 93.9 91.8 83.8 89.2 63.6
RoBERTa 88.9/94.6 86.5/89.4 90.2/90.2 964 922 94.7 92.4 86.6 90.9 68.0
BART 88.8/94.6 86.1/89.2 89.9/90.1 96.6 92.5 94.9 91.2 87.0 90.4 62.8
CNN/DailyMail XSum
R1 R2 RL R1 R2 RL
Lead-3 4042 17.62 36.67 1630 1.60 11.95
PTGEN (See et al., 2017) 36.44 15.66 3342 2970 921 2324
PTGEN+COV (See et al., 2017) 39.53 17.28 3638 28.10 8.02 21.72
UniLM 43.33 20.21 40.51 - - -
BERTSUMARBS (Liu & Lapata, 2019) 4172 1939 38.76 38.76 1633 31.15

BERTSUMEXTABS (Liu & Lapata, 2019) 42.13 19.60 39.18 38.81 1650 31.27
BART 44.16 21.28 4090 45.14 2227 37.25
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Encoder-Decoder Pretraining: T5

* T5: Text-to-Text Transfer Transformer
* Pretraining: Mask out spans of texts; generate the original spans
* Fine-Tuning: Convert every task into a sequence-to-sequence generation problem

*  WeEeé'll see this model again in the instruction tuning lectures

[President Franklin <M> born <M> January 1882.

D. Roosevelt was <M> in ]

Lily couldn't <M>. The waitress
had brought the largest <M> of believe her eyes <M>
chocolate cake <M> seen. piece <M> she had ever

Our <M> hand-picked and sun-dried
<M> orchard in Georgia.

peaches are <M> at our ]

President Franklin D.
Roosevelt was born
in January 1882.

Pre-training

Fine-tuning .
When was Franklin D. |
[ Roosevelt born?

T5: https://arxiv.org/pdf/1910.10683
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T5 Performance

* Good performance across various tasks

* T5vs. BART performance: unclear comparison due to difference in model sizes &
training setups

GLUE CoLA SST-2 MRPC MRPC STS-B STS-B
Model Average Matthew’s Accuracy F1 Accuracy Pearson Spearman
Previous best ~ 89.4% 69.2° 97.1¢ 93.6" 91.5° 92.7° 92.3°
T5-Small 77.4 41.0 91.8 89.7 86.6 85.6 85.0
T5-Base 82.7 51.1 95.2 90.7 87.5 89.4 88.6
T5-Large 86.4 61.2 96.3 92.4 89.9 89.9 89.2
T5-3B 88.5 67.1 97.4 92.5 90.0 90.6 89.8
T5-11B 90.3 71.6 97.5 92.8 90.4 93.1 92.8

QQP QQP MNLI-m MNLI-mm QNLI RTE WNLI
Model F1 Accuracy Accuracy  Accuracy  Accuracy Accuracy Accuracy
Previous best  74.8° 90.7° 91.3% 91.0° 99.2¢ 89.2¢ 91.8%
T5-Small 70.0 88.0 82.4 82.3 90.3 69.9 69.2
T5-Base 72.6 89.4 87.1 86.2 93.7 80.1 78.8
T5-Large 73.9 89.9 89.9 89.6 94.8 87.2 85.6
T5-3B 74.4 89.7 91.4 91.2 96.3 91.1 89.7

T5-11B 75.1 90.6 92.2 91.9 96.9 92.8 94.5
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Encoder-Decoder vs. Decoder-Only

* Modern LLMs are mostly based on the decoder-only Transformer architecture

e Simplicity:
. Decoder-only models are simpler in structure (one Transformer model)
. Encoder-decoder models require two Transformer models

e Efficiency:
. Decoder-only models are more parameter-efficient for text generation
. Encoder-decoder models’ encoder part does not contribute to generation

e  Scalability:
. Decoder-only models scale very well with increased model size and data
. Encoder-decoder models do not outperform decoder-only models at large model sizes



Thank You!

Yu Meng
University of Virginia
yumeng5@virginia.edu
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