

Language Model Pretraining & Fine-Tuning

Yu Meng

University of Virginia yumeng5@virginia.edu

Jan 22, 2025

(Recap) Course Format & Grading: Paper Presentation (30%)

- Starting from next Monday (1/27), each lecture will be presented by a group of 1 or 2 students
- Every group presents one lecture (3 papers)
- Deadline: email your slides to the instructor & TA 48 hours before the lecture (If presenting next Monday, you'll need to submit your slides by this Saturday 2pm)

(Recap) Course Format & Grading: Participation (20%)

- Starting from **next Monday (1/27)**, everyone is required to complete two miniassignments
- Pre-lecture question: read the 3 papers to be introduced in the lecture, and submit a
 question you have when you read them
- Post-lecture feedback: provide feedback to the presenters after the lecture
- We'll release the Google Forms later this week (Canvas announcement)
- **Deadlines**: pre-lecture questions are due one day before the lecture (e.g., For Monday lectures, you need to submit the question by Sunday 11:59 pm); post-lecture feedback is due each Friday (both Monday & Wednesday feedback is due Friday 11:59 pm)
- The Google Forms will be closed once the deadline is passed!

(Recap) Course Format & Grading: Project (50%)

- Complete a research project, present your results, and submit a project report
- Work in a team of 1 or 2 (a larger team size requires prior approval from the instructor) – may or may not be the same team as your presentation group
- (Type 1) A comprehensive survey report: carefully examine and summarize existing literature on a topic covered in this course; provide detailed and insightful discussions on the unresolved issues, challenges, and potential future opportunities within the chosen topic
- (Type 2) A hands-on project: not constrained to the course topics but must be centered around NLP; doesn't have to involve large language models (e.g., train or analyze smaller-scale language models for specific tasks); eligible for extra credits if publishable
- Project proposal: 5% (ddl: 2/5); Mid-term report: 10% (ddl: 3/10); Final presentation (ddl: 4/15) and final report: 35% (ddl: 5/6)

(Recap) Overview of Course Contents

- Introduction to Language Models
 - Language Model Architecture
 - Language Model Pretraining & Fine-Tuning
 - In-Context Learning
 - Scaling and Emergent Ability
- Reasoning with Language Models
 - Chain-of-Thought Generation
 - Inference-Time Scaling
- Knowledge, Factuality and Efficiency
 - Parametric Knowledge in Language Models
 - Retrieval-Augmented Language Generation (RAG)
 - Long-Context Language Models
 - Efficiency

- Language Model Post-Training
 - Instruction Tuning
 - Reinforcement Learning from Human Feedback (RLHF)
- Language Agents
 - Language Agent Basics
 - Language Models for Code
 - Multimodal Language Models
- Ethical Considerations of Language Models
 - Security and Jailbreaking
 - Bias and Calibration
 - Privacy and Legal Issues
- Looking Forward

(Recap) Vector Semantics

- Represent a word as a point in a multi-dimensional semantic space
- A desirable vector semantic space: words with similar meanings are nearby in space

```
not good
                                                          bad
      by
to
                                                dislike
                                                              worst
                                               incredibly bad
that
       now
                     are
               you
 than
         with
                                        incredibly good
                            very good
                    amazing
                                       fantastic
                                                wonderful
                 terrific
                                     nice
                                   good
```

2D visualization of a desirable high-dimensional vector semantic space

(Recap) Word2Vec Paper

Distributed Representations of Words and Phrases and their Compositionality

Tomas Mikolov
Google Inc.

Mountain View mikolov@google.com

Ilya Sutskever

Google Inc.
Mountain View
ilyasu@google.com

Kai Chen

Google Inc.
Mountain View
kai@google.com

Greg Corrado

Google Inc.
Mountain View
gcorrado@google.com

Jeffrey Dean

Google Inc.
Mountain View
jeff@google.com

Paper: https://arxiv.org/pdf/1310.4546

(Recap) Distributional Hypothesis

- Words that occur in similar contexts tend to have similar meanings
- A word's meaning is largely defined by the company it keeps (its context)
- Example: suppose we don't know the meaning of "Ong choy" but see the following:
 - Ong choy is delicious sautéed with garlic
 - Ong choy is superb over rice
 - ... ong choy leaves with salty sauces
- And we've seen the following contexts:
 - ... spinach sautéed with garlic over rice
 - ... chard stems and leaves are delicious
 - ... collard greens and other salty leafy greens
- Ong choy = water spinach!

(Recap) Learning Word Embeddings

- Assume a large text collection (e.g., Wikipedia)
- Hope to learn similar word embeddings for words occurring in similar contexts
- Construct a prediction task: use a center word's embedding to predict its contexts!
- Intuition: If two words have similar embeddings, they will predict similar contexts, thus being semantically similar!

9/58

(Recap) Word2Vec Parameterized Objective

- Word2Vec objective: $\max_{m{\theta}} \prod_{(w,c) \in \mathcal{D}} p_{m{\theta}}(c|w)$
- Assume the log probability (i.e., logit) is proportional to vector dot product $\log p_{\bm{\theta}}(c|w) \propto \bm{v}_c \cdot \bm{v}_w$
- The final probability distribution is given by the softmax function:

$$p_{\theta}(c|w) = \frac{\exp(\boldsymbol{v}_c \cdot \boldsymbol{v}_w)}{\sum_{c' \in |\mathcal{V}|} \exp(\boldsymbol{v}_{c'} \cdot \boldsymbol{v}_w)} \qquad \sum_{c' \in |\mathcal{V}|} p_{\theta}(c'|w) = 1$$

Word2Vec objective (log-scale):

$$\max_{oldsymbol{ heta}} \sum_{(w,c) \in \mathcal{D}} \log p_{oldsymbol{ heta}}(c|w) = \sum_{(w,c) \in \mathcal{D}} \left(oldsymbol{v}_c \cdot oldsymbol{v}_w - \log \sum_{c' \in |\mathcal{V}|} \exp(oldsymbol{v}_{c'} \cdot oldsymbol{v}_w)
ight)$$

(Recap) Summary: Word2Vec

- Distributional hypothesis
 - Words that occur in similar contexts tend to have similar meanings
 - Infer semantic similarity based on context similarity
- Word embeddings
 - Construct a prediction task: use a center word's embedding to predict its contexts
 - Two words with similar embeddings will predict similar contexts => semantically similar
 - Word embedding is a form of self-supervised learningEmploy negative sampling to improve training efficiency
- Use SGD to optimize vector representations
- Word embedding applications & evaluations
 - Word similarity
 - Word analogy
 - Use as input features to downstream tasks

(Recap) Limitations: Word2Vec

- Limited Context Window:
 - only considers a fixed-size context window when generating embeddings
 - cannot effectively capture long-range dependencies (e.g. words that appear far apart)
- Static Embeddings:
 - the embeddings generated by Word2Vec are static (regardless of the context)
 - polysemy can have different meanings depending on specific context
- Not Capturing Word Order Information:
 - focuses only on co-occurrence within the context window
 - ignores the sequential structure of language

(Recap) Transformer Paper

Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Llion Jones*
Google Research
llion@google.com

Noam Shazeer*
Google Brain
noam@google.com

Niki Parmar* Google Research nikip@google.com

Aidan N. Gomez* †

University of Toronto
aidan@cs.toronto.edu lukaszł

Łukasz Kaiser*Google Brain
lukaszkaiser@google.com

.Jakob Uszkoreit*

Google Research

usz@google.com

Illia Polosukhin* †
illia.polosukhin@gmail.com

Paper: https://arxiv.org/pdf/1706.03762

(Recap) Transformer Layer

Each Transformer layer contains the following important components:

- Self-attention
- Feedforward network
- Residual connections + layer norm

Transformer layer

Add & Normalize

Feed Forward

Feed Forward

Self-Attention

Positional Encoding

X1

(Recap) Self-Attention: Intuition

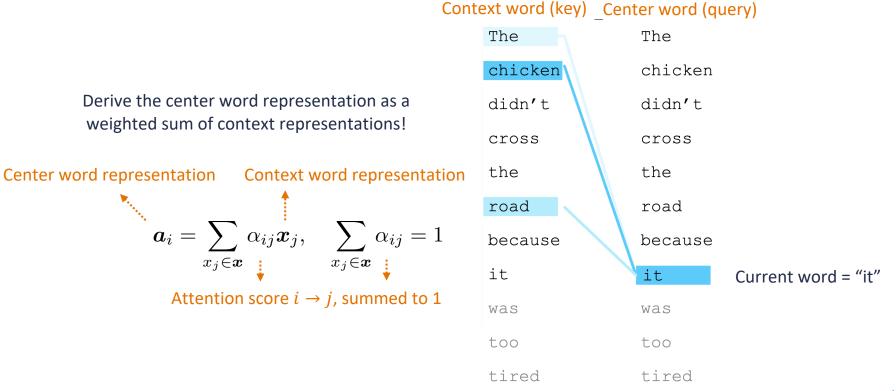
- Attention: weigh the importance of different words in a sequence when processing a specific word
 - "When I'm looking at this word, which other words should I pay attention to in order to understand it better?"
- **Self-attention**: each word attends to other words in the **same** sequence
- Example: "The chicken didn't cross the road because it was too tired"
 - Suppose we are learning attention for the word "it"
 - With self-attention, "it" can decide which other words in the sentence it should focus on to better understand its meaning
 - Might assign high attention to "chicken" (the subject) & "road" (another noun)
 - Might assign less attention to words like "the" or "didn't"

Self-Attention: Example

Derive the center word representation as a weighted sum of context representations!

 $oldsymbol{a}_i = \sum_{x_j \in oldsymbol{x}} lpha_{ij} oldsymbol{x}_j, \quad \sum_{x_j \in oldsymbol{x}} lpha_{ij} = 1$

Attention score $i \rightarrow j$, summed to 1



Self-Attention: Attention Score Computation

Attention score is given by the softmax function over vector dot product

$$\begin{aligned} \boldsymbol{a}_i &= \sum_{x_j \in \boldsymbol{x}} \alpha_{ij} \boldsymbol{x}_j, \quad \sum_{x_j \in \boldsymbol{x}} \alpha_{ij} = 1 \\ \alpha_{ij} &= \operatorname{Softmax}(\boldsymbol{x}_i \cdot \boldsymbol{x}_j) \\ & \\ \text{Center word (query) representation} \end{aligned}$$

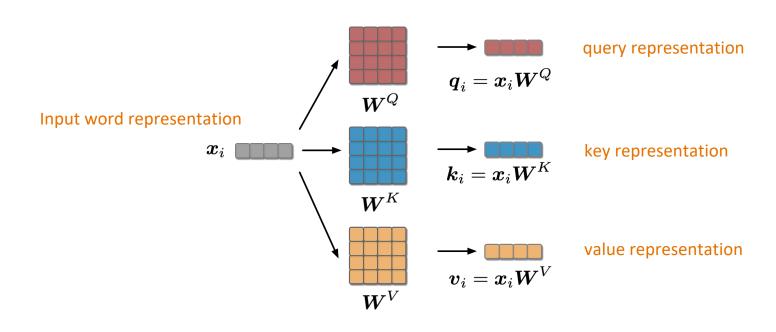
- Why use two copies of word representations for attention computation?
 - We want to reflect the different roles a word plays (as the target word being compared to others, or as the context word being compared to the target word)
 - If using the same copy of representations for attention calculation, a word will (almost) always attend to itself heavily due to high dot product with itself!

Self-Attention: Query, Key, and Value

- Each word in self-attention is represented by three different vectors
 - Allow the model to flexibly capture different types of relationships between tokens
- Query (Q):
 - Represent the current word seeking information about
- Key (K):
 - Represent the reference (context) against which the query is compared
- Value (V):
 - Represent the actual content associated with each token to be aggregated as final output

Self-Attention: Query, Key, and Value

Each self-attention module has three weight matrices applied to the input word vector to obtain the three copies of representations



Self-Attention: Overall Computation

- Input: single word vector of each word $oldsymbol{x}_i$
- Compute Q, K, V representations for each word:

$$oldsymbol{q}_i = oldsymbol{x}_i oldsymbol{W}^Q \quad oldsymbol{k}_i = oldsymbol{x}_i oldsymbol{W}^K \quad oldsymbol{v}_i = oldsymbol{x}_i oldsymbol{W}^V$$

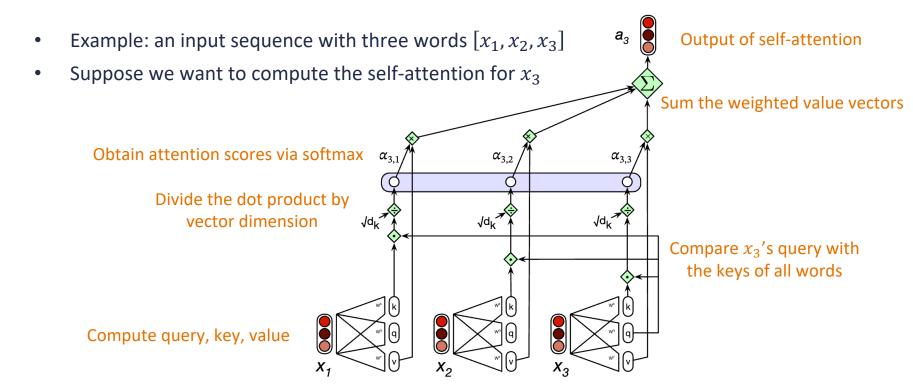
- Compute attention scores with Q and K
 - The dot product of two vectors usually has an expected magnitude proportional to \sqrt{d}
 - Divide the attention score by \sqrt{d} to avoid extremely large values in softmax function

$$lpha_{ij} = \operatorname{Softmax}\left(rac{m{q}_i\cdot m{k}_j}{\sqrt{d}}
ight)$$
 Dimensionality of $m{q}$ and $m{k}$

Sum the value vectors weighted by attention scores

$$a_i = \sum_{x_j \in x} \alpha_{ij} v_j$$

Self-Attention: Illustration



21/58

Multi-Head Self-Attention

- Transformers use multiple attention heads for each self-attention module
- Intuition:
 - Each head might attend to the context for different purposes (e.g., particular kinds of patterns in the context)
 - Heads might be specialized to represent different linguistic relationships

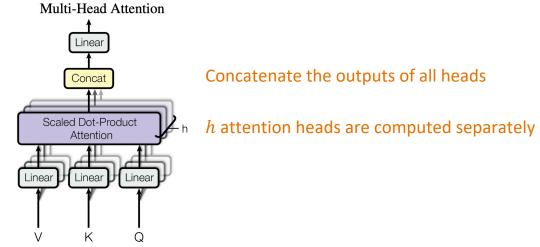
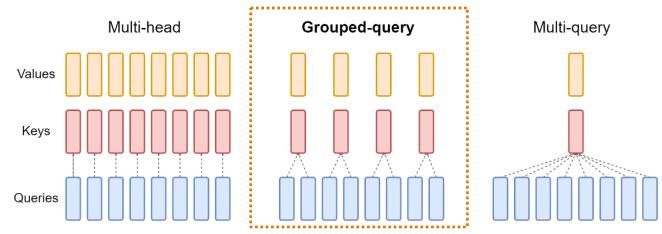


Figure source: https://arxiv.org/pdf/1706.03762

Multi-Head Self-Attention Variants

- Multi-query attention (<u>Fast Transformer Decoding: One Write-Head is All You Need</u>): share keys and values across all attention heads
- Grouped-query attention (<u>GQA: Training Generalized Multi-Query Transformer Models</u> from <u>Multi-Head Checkpoints</u>): share keys and values within groups of heads

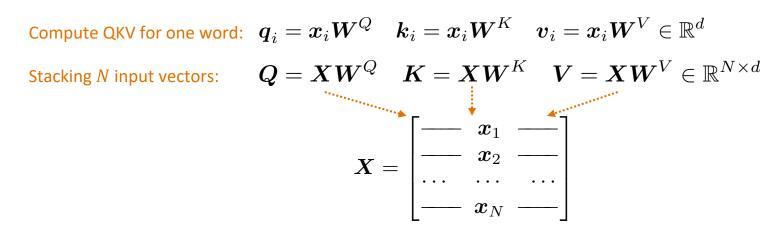


Used in latest LLMs (e.g., Llama3)

Figure source: https://arxiv.org/pdf/2305.13245

Parallel Computation of QKV

- Self-attention computation performed for each token is independent of other tokens
- Easily parallelize the entire computation, taking advantage of the efficient matrix multiplication capability of GPUs
- Process an input sequence with N words in parallel



Parallel Computation of Attention

Attention computation can also be written in matrix form

Compute attention for one word:
$$a_i = \operatorname{Softmax}\left(\frac{m{q}_i \cdot m{k}_j}{\sqrt{d}}\right) \cdot m{v}_j$$

Compute attention for one
$$N$$
 words: $m{A} = \operatorname{Softmax}\left(rac{m{Q}m{K}^{ op}}{\sqrt{d}}
ight)m{V}$

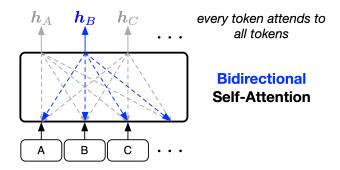
Attention matrix

q1•k1	q1·k2	q1•k3	q1·k4
q2•k1	q2•k2	q2•k3	q2•k4
q3•k1	q3•k2	q3•k3	q3•k4
q4·k1	q4·k2	q4•k3	q4•k4

Ν

Bidirectional vs. Unidirectional Self-Attention

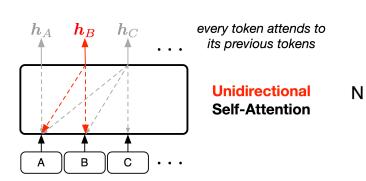
- Self-attention can capture different context dependencies
- Bidirectional self-attention:
 - Each position to attend to all other positions in the input sequence
 - Transformers with bidirectional self-attention are called Transformer encoders (e.g., BERT)
 - Use case: natural language understanding (NLU) where the entire input is available at once,
 such as text classification & named entity recognition



Bidirectional vs. Unidirectional Self-Attention

- Self-attention can capture different context dependencies
- Unidirectional (or causal) self-attention:
 - Each position can only attend to earlier positions in the sequence (including itself).
 - Transformers with unidirectional self-attention are called Transformer decoders (e.g., GPT)
 - Use case: natural language generation (NLG) where the model generates output sequentially

upper-triangle portion set to -inf



q1•k1	-8	8	8
q2•k1	q2•k2	-8	-8
q3•k1	q3·k2	q3·k3	-8
q4•k1	q4·k2	q4·k3	q4·k4

Position Encoding

Motivation: inject positional information to input vectors

$$egin{aligned} oldsymbol{q}_i &= oldsymbol{x}_i oldsymbol{W}^{Q} & oldsymbol{k}_i &= oldsymbol{x}_i oldsymbol{W}^{K} & oldsymbol{v}_i &= oldsymbol{x}_i oldsymbol{W}^{V} \in \mathbb{R}^d \ & oldsymbol{a}_i &= \operatorname{Softmax}\left(rac{oldsymbol{q}_i \cdot oldsymbol{k}_j}{\sqrt{d}}
ight) \cdot oldsymbol{v}_j & & ext{When $oldsymbol{x}$ is word embedding, $oldsymbol{q}$ and $oldsymbol{k}$ do not have positional information!} \end{aligned}$$

How to know the word positions in the sequence? Use position encoding!

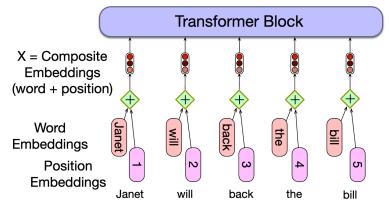


Figure source: https://web.stanford.edu/~jurafsky/slp3/9.pdf

Position Encoding Methods

- Absolute position encoding (the original Transformer paper)
 - Learn position embeddings for each position
 - Not generalize well to sequences longer than those seen in training
- Relative position encoding (<u>Self-Attention with Relative Position Representations</u>)
 - Encode the relative distance between words rather than their absolute positions
 - Generalize better to sequences of different lengths
- Rotary position embedding (<u>RoFormer: Enhanced Transformer with Rotary Position Embedding</u>)
 - Apply a rotation matrix to the word embeddings based on their positions
 - Incorporate both absolute and relative positions
 - Generalize effectively to longer sequences
 - Widely-used in latest LLMs

Summary: Transformer

- Motivation: weigh the importance of different words in a sequence when processing a specific word
- Implementation: represent each word with three vectors:
 - Query: the current word that seeks information
 - Key: context word to be retrieved information from
 - Value: semantic content to be aggregated as the new word representation
- Allow parallel computation of all input words
- Usually deployed with multiple heads to capture various linguistic relationships
- Can be either unidirectional (only attend to previous words) or bidirectional (attend to all words)
- Need to use position encodings to inject positional information

Limitations: Transformer

- Quadratic Complexity wrt Sequence Length:
 - self-attention has a quadratically complexity with the sequence length
 - processing long sequences is extremely compute & memory expensive
- Interpretability & Explainability:
 - complex architecture with many layers and attention heads (totaling billions of parameters)
 - difficult to understand how they arrive at their predictions & debug
- Positional Encoding:
 - the original Transformer paper adopts manually-defined position encodings likely suboptimal
 - follow-up works propose advance position encoding methods to enhance expressiveness

Agenda: Language Model Pretraining & Fine-Tuning

- Background: Pretraining & Fine-Tuning
- Decoder Pretraining
- Encoder Pretraining
- Encoder-Decoder Pretraining

Pretraining: Motivation

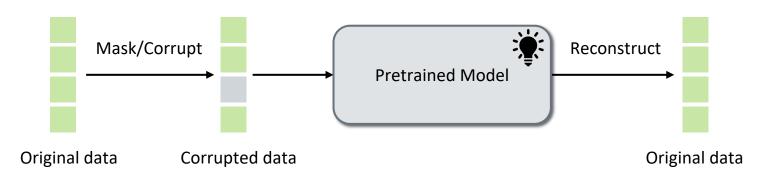
- There are abundant text data on the web, with rich information of linguistic features and knowledge about the world
- Learning from these easy-to-obtain data greatly benefits various downstream tasks

Pretraining: Multi-Task Learning

- In my free time, I like to {<u>run</u>, banana} (*Grammar*)
- I went to the zoo to see giraffes, lions, and {zebras, spoon} (Lexical semantics)
- The capital of Denmark is {Copenhagen, London} (World knowledge)
- I was engaged and on the edge of my seat the whole time. The movie was {good, bad} (Sentiment analysis)
- The word for "pretty" in Spanish is **(bonita, hola)** (*Translation*)
- $3 + 8 + 4 = \{ 15, 11 \} (Math)$
- ...

Pretraining: Self-Supervised Learning

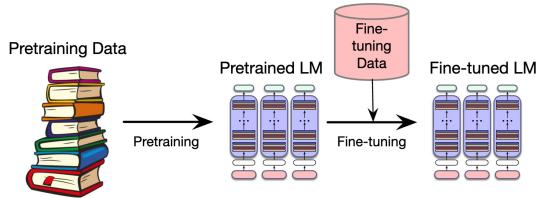
- Pretraining is a form of self-supervised learning
- Make a part of the input unknown to the model
- Use other parts of the input to reconstruct/predict the unknown part



No Human Supervision Needed!

Pretraining + Fine-Tuning

- Pretraining: trained with pretext tasks on large-scale text corpora
- Fine-tuning (also called post-training): adjust the pretrained model's parameters with fine-tuning data
- Fine-tuning data can have different forms:
 - Task-specific labeled data (e.g., sentiment classification, named entity recognition)
 - (Multi-turn) dialogue data (i.e., instruction tuning)

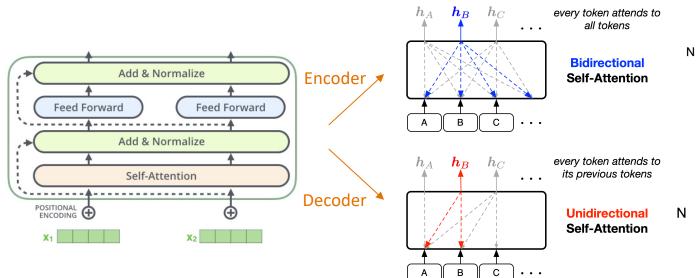


Transformer for Pretraining

- Transformer is the common backbone architecture for language model pretraining
- **Efficiency**: Transformer processes all tokens in a sequence simultaneously fast and efficient to train, especially on large datasets
- **Scalability**: Transformer architectures have shown impressive scaling properties, with performance improving as model size and training data increase (more on this later!)
- Versatility: Transformer can be adapted for various tasks and modalities beyond just text, including vision, audio, and other multimodal applications

Transformer Architectures

- Based on the type of self-attention, Transformer can be instantiated as
 - Encoder: Bidirectional self-attention
 - Decoder: Unidirectional self-attention
 - Encoder-decoder: Use both encoder and decoder



q1·k1	q1•k2	q1•k3	q1•k4
q2•k1	q2•k2	q2•k3	q2•k4
q3•k1	q3•k2	q3•k3	q3•k4
q4·k1	q4•k2	q4•k3	q4•k4

N									
q1•k1	-8	-8	-∞						
q2·k1	q2•k2	-8	-∞						
q3•k1	q3·k2	q3·k3	-∞						
q4•k1	q4•k2	q4·k3	q4·k4						

Applications of Transformer Architectures

- Encoder (e.g., BERT):
 - Capture bidirectional context to learn each token representations
 - Suitable for natural language understanding (NLU) tasks
- Decoder (modern large language models, e.g., GPT):
 - Use prior context to predict the next token (conventional language modeling)
 - Suitable for natural language generation (NLG) tasks
 - Can also be used for NLU tasks by generating the class labels as tokens
- Encoder-decoder (e.g., BART, T5):
 - Use the encoder to process input, and use the decoder to generate outputs
 - Can conduct all tasks that encoders/decoders can do

NLU:

Text classification
Named entity recognition
Relation extraction
Sentiment analysis

NLG:

Text summarization Machine translation Dialogue system Question answering

Agenda: Language Model Pretraining & Fine-Tuning

- Background: Pretraining & Fine-Tuning
- Decoder Pretraining
- Encoder Pretraining
- Encoder-Decoder Pretraining

GPT & Llama

Language Models are Unsupervised Multitask Learners

Alec Radford * 1 Jeffrey Wu * 1 Rewon Child 1 David Luan 1 Dario Amodei ** 1 Ilya Sutskever ** 1

Paper: https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf

LLaMA: Open and Efficient Foundation Language Models

Hugo Touvron; Thibaut Lavril; Gautier Izacard; Xavier Martinet Marie-Anne Lachaux, Timothee Lacroix, Baptiste Rozière, Naman Goyal Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin Edouard Grave; Guillaume Lample*

Paper: https://arxiv.org/pdf/2302.13971

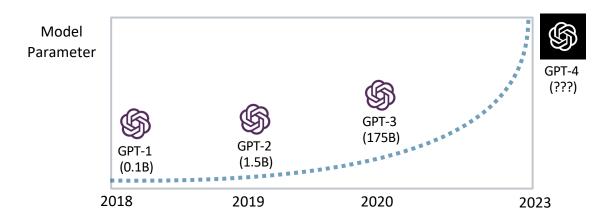
Decoder Pretraining

- Decoder architecture is the prominent choice in large language models
- Pretraining decoders is first introduced in GPT (generative pretraining) models
- Follow the standard language modeling (cross-entropy) objective

$$\mathcal{L}(\boldsymbol{\theta}) = -\frac{1}{N} \sum_{i=1}^{N} \log p_{\boldsymbol{\theta}}(x_i | x_1, x_2, \dots, x_{i-1})$$

GPT Series

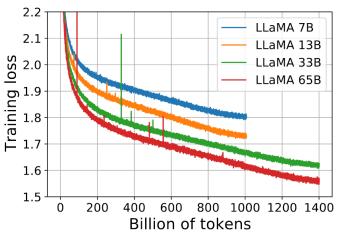
- GPT-1 (2018): 12 layers, 117M parameters, trained in ~1 week
- GPT-2 (2019): 48 layers, 1.5B parameters, trained in ~1 month
- GPT-3 (2020): 96 layers, 175B parameters, trained in several months



Papers: (GPT-1) https://cdn.openai.com/research-covers/language-unsupervised/language understanding paper.pdf
(GPT-2) https://d4mucfpksywv.cloudfront.net/better-language-models/language models are unsupervised multitask learners.pdf
(GPT-3) https://arxiv.org/pdf/2005.14165.pdf
43/58

Llama Series

- Llama-1 (2023/02): 7B/13B/33B/65B
- Llama-2 (2023/07): 7B/13B/70B
- Llama-3 (3.1 & 3.2) (2024/07): 1B/3B/8B/70B/405B w/ multi-modality



Larger models learn pretraining data better

Papers: (Llama-1) https://arxiv.org/pdf/2302.13971

(Llama-2) https://arxiv.org/pdf/2307.09288

(Llama-3) https://arxiv.org/pdf/2407.21783

Agenda: Language Model Pretraining & Fine-Tuning

- Background: Pretraining & Fine-Tuning
- Decoder Pretraining
- Encoder Pretraining
- Encoder-Decoder Pretraining

BERT

BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee Kristina Toutanova
Google AI Language
{jacobdevlin, mingweichang, kentonl, kristout}@google.com

46/58

Encoder Pretraining: BERT

- BERT pretrains encoder models with bidirectionality
- Masked language modeling (MLM): With 15% words randomly masked, the model learns bidirectional contextual information to predict the masked words

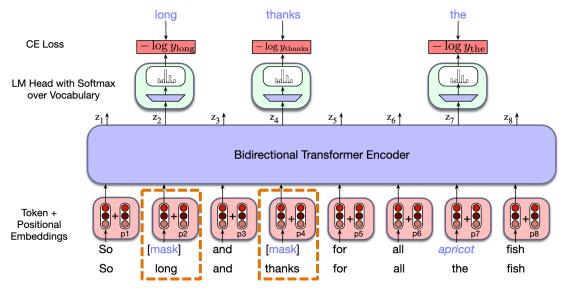
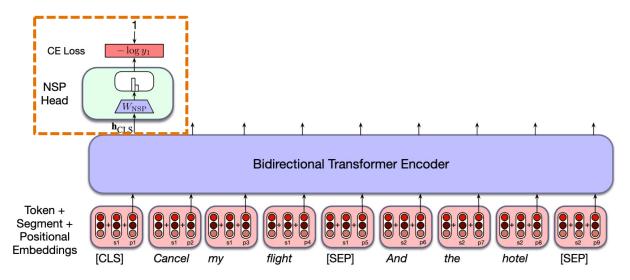


Figure source: https://web.stanford.edu/~jurafsky/slp3/11.pdf

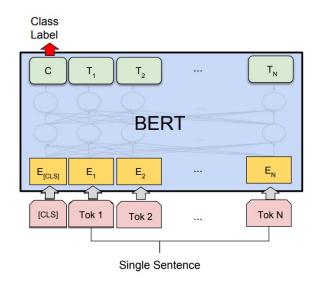
Encoder Pretraining: BERT

- **Next sentence prediction** (NSP): the model is presented with pairs of sentences
- The model is trained to predict whether each pair consists of an actual pair of adjacent sentences from the training corpus or a pair of unrelated sentence

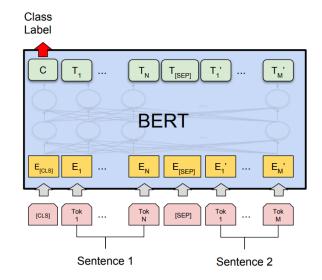


BERT Fine-Tuning

- Fine-tuning pretrained BERT models takes different forms depending on task types
- Usually replace the LM head with a linear layer fine-tuned on task-specific data



Single sequence classification



Sequence-pair classification

BERT vs. GPT on NLU tasks

- BERT outperforms GPT-1 on a set of NLU tasks
- Encoders capture bidirectional contexts build a richer understanding of the text by looking at both preceding and following words
- Are encoder models still better than state-of-the-art (large) decoder models?
 - LLMs can be as good as (if not better than) encoders model on NLU: <u>Can ChatGPT</u> Understand Too?
 - The sheer model size + massive amount of pretraining data compensate for LLMs' unidirectional processing

System	MNLI-(m/mm)	QQP	QNLI	SST-2	CoLA	STS-B	MRPC	RTE	Average
	392k	363k	108k	67k	8.5k	5.7k	3.5k	2.5k	-
Pre-OpenAI SOTA	80.6/80.1	66.1	82.3	93.2	35.0	81.0	86.0	61.7	74.0
BiLSTM+ELMo+Attn	76.4/76.1	64.8	79.8	90.4	36.0	73.3	84.9	56.8	71.0
OpenAI GPT	82.1/81.4	70.3	87.4	91.3	45.4	80.0	82.3	56.0	75.1
BERTBASE	84.6/83.4	71.2	90.5	93.5	52.1	85.8	88.9	66.4	79.6
$BERT_{LARGE}$	86.7/85.9	72.1	92.7	94.9	60.5	86.5	89.3	70.1	82.1

Agenda: Language Model Pretraining & Fine-Tuning

- Background: Pretraining & Fine-Tuning
- Decoder Pretraining
- Encoder Pretraining
- Encoder-Decoder Pretraining

BART & T5

BART: Denoising Sequence-to-Sequence Pre-training for Natural Language Generation, Translation, and Comprehension

Mike Lewis*, Yinhan Liu*, Naman Goyal*, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer Levy, Ves Stoyanov, Luke Zettlemoyer Facebook AI

Paper: https://arxiv.org/pdf/1910.13461

Exploring the Limits of Transfer Learning with a Unified
Text-to-Text Transformer

Colin Raffel* CRAFFEL@GMAIL.COM Noam Shazeer* NOAM@GOOGLE.COM Adam Roberts* ADAROB@GOOGLE.COM Katherine Lee* KATHERINELEE@GOOGLE.COM **Sharan Narang** SHARANNARANG@GOOGLE.COM Michael Matena MMATENA@GOOGLE.COM Yanqi Zhou YANQIZ@GOOGLE.COM Wei Li MWEILI@GOOGLE.COM Peter J. Liu PETERJLIU@GOOGLE.COM

Paper: https://arxiv.org/pdf/1910.10683

Encoder-Decoder Pretraining: BART

- Pretraining: Apply a series of noising schemes (e.g., masks, deletions, permutations...)
 to input sequences and train the model to recover the original sequences
- Fine-Tuning:
 - For NLU tasks: Feed the same input into the encoder and decoder, and use the final decoder token for classification
 - For NLG tasks: The encoder takes the input sequence, and the decoder generates outputs autoregressively

BART Performance

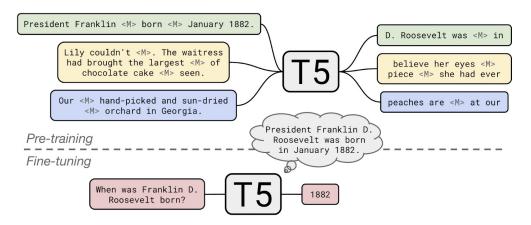
- Comparable to encoders on NLU tasks
- Good performance on NLG tasks

	SQuAD 1.1 EM/F1	SQuAD 2.0 EM/F1	MNLI m/mm	SST Acc	QQP Acc	QNLI Acc	STS-B Acc	RTE Acc	MRPC Acc	CoLA Mcc
BERT	84.1/90.9	79.0/81.8	86.6/-	93.2	91.3	92.3	90.0	70.4	88.0	60.6
UniLM	-/-	80.5/83.4	87.0/85.9	94.5	-	92.7	-	70.9	-	61.1
XLNet	89.0 /94.5	86.1/88.8	89.8/-	95.6	91.8	93.9	91.8	83.8	89.2	63.6
RoBERTa	88.9/ 94.6	86.5/89.4	90.2/90.2	96.4	92.2	94.7	92.4	86.6	90.9	68.0
BART	88.8/ 94.6	86.1/89.2	89.9/90.1	96.6	92.5	94.9	91.2	87.0	90.4	62.8

	CNN/DailyMail			XSum			
	R1	R2	RL	R 1	R2	RL	
Lead-3	40.42	17.62	36.67	16.30	1.60	11.95	
PTGEN (See et al., 2017)	36.44	15.66	33.42	29.70	9.21	23.24	
PTGEN+COV (See et al., 2017)	39.53	17.28	36.38	28.10	8.02	21.72	
UniLM	43.33	20.21	40.51	-	-	-	
BERTSUMABS (Liu & Lapata, 2019)	41.72	19.39	38.76	38.76	16.33	31.15	
BERTSUMEXTABS (Liu & Lapata, 2019)	42.13	19.60	39.18	38.81	16.50	31.27	
BART	44.16	21.28	40.90	45.14	22.27	37.25	

Encoder-Decoder Pretraining: T5

- T5: Text-to-Text Transfer Transformer
- Pretraining: Mask out spans of texts; generate the original spans
- Fine-Tuning: Convert every task into a sequence-to-sequence generation problem
- We'll see this model again in the instruction tuning lectures



55/58

T5 Performance

- Good performance across various tasks
- T5 vs. BART performance: unclear comparison due to difference in model sizes & training setups

Model	GLUE Average		CoLA SST-2 Matthew's Accuracy		MRPC Accuracy	STS-B Pearson	STS-B Spearman
Previous best	-89.4^{a}	69.2^{b}	97.1	93.6 ^b	91.5^b	92.7^{b}	92.3^{b}
T5-Small	77.4	41.0	91.8	89.7	86.6	85.6	85.0
T5-Base	82.7	51.1	95.2	90.7	87.5	89.4	88.6
T5-Large	86.4	61.2	96.3	92.4	89.9	89.9	89.2
T5-3B	88.5	67.1	97.4	92.5	90.0	90.6	89.8
T5-11B	90.3	71.6	97.5	92.8	90.4	93.1	92.8
	QQP	QQP	MNLI-m	MNLI-mm	QNLI	RTE	WNLI
Model	F1	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy	Accuracy
Previous best	74.8^{c}	90.7^{b}	91.3^{a}	91.0^{a}	99.2^{a}	89.2^{a}	91.8^{a}
T5-Small	70.0	88.0	82.4	82.3	90.3	69.9	69.2
T5-Base	72.6	89.4	87.1	86.2	93.7	80.1	78.8
T5-Large	73.9	89.9	89.9	89.6	94.8	87.2	85.6
T5-3B	74.4	89.7	91.4	91.2	96.3	91.1	89.7
T5-11B	75.1	90.6	$\boldsymbol{92.2}$	91.9	96.9	92.8	94.5

Encoder-Decoder vs. Decoder-Only

- Modern LLMs are mostly based on the decoder-only Transformer architecture
- Simplicity:
 - Decoder-only models are simpler in structure (one Transformer model)
 - Encoder-decoder models require two Transformer models
- Efficiency:
 - Decoder-only models are more parameter-efficient for text generation
 - Encoder-decoder models' encoder part does not contribute to generation
- Scalability:
 - Decoder-only models scale very well with increased model size and data
 - Encoder-decoder models do not outperform decoder-only models at large model sizes

Thank You!

Yu Meng

University of Virginia

yumeng5@virginia.edu